Effects of a Thin Ru-Doped PVP Interface Layer on Electrical Behavior of Ag/n-Si Structures

Effects of a Thin Ru-Doped PVP Interface Layer on Electrical Behavior of Ag/n-Si Structures The aim of this study is to improve the electrical property of Ag/n-Si metal–semiconductor (MS) structure by growing an Ru-doped PVP interlayer between Ag and n-Si using electrospinning technique. To illustrate the utility of the Ru-doped PVP interface layer, current–voltage (I–V) characteristics of Ag/n-Si (MS) and Ag/Ru-doped PVP/n-Si metal–polymer–semiconductor (MPS) structures was carried out. In addition, the main electrical parameters of the fabricated Ag/Ru-doped PVP/n-Si structures were investigated as a function of frequency and electric field using impedance spectroscopy method (ISM). The capacitance–voltage (C–V) plot showed an anomalous peak in the depletion region due to the special density distribution of interface traps/states (D it /N ss) and interlayer. Both the values of series resistance (R s) and N ss were drawn as a function of voltage and frequency between 0.5 kHz and 5 MHz at room temperature and they had a peak behavior in the depletion region. Some important parameters of the sample such as the donor concentration atoms (N D), Fermi energy (E F ), thickness of the depletion region (W D), barrier height (Φ B0 ) and R s were determined from the C −2 versus V plot for each frequency. The values of N D , W D , Φ B0 and R s were changed from 1 × 1015 cm−3, 9.61 × 10−5 cm, 0.94 eV and 19,055 Ω (at 0.5 kHz) to 0.13 × 1015 cm−3, 27.4 × 10−4 cm, 1.04 eV and 70 Ω (at 5 MHz), respectively. As a result of the experiments, it is observed that the change in electrical parameters becomes more effective at lower frequencies due to the N ss and their relaxation time (τ), dipole and surface polarizations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Electronic Materials Springer Journals

Effects of a Thin Ru-Doped PVP Interface Layer on Electrical Behavior of Ag/n-Si Structures

Loading next page...
 
/lp/springer_journal/effects-of-a-thin-ru-doped-pvp-interface-layer-on-electrical-behavior-P0gPHN58lC
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Minerals, Metals & Materials Society
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials; Electronics and Microelectronics, Instrumentation; Solid State Physics
ISSN
0361-5235
eISSN
1543-186X
D.O.I.
10.1007/s11664-018-6195-8
Publisher site
See Article on Publisher Site

Abstract

The aim of this study is to improve the electrical property of Ag/n-Si metal–semiconductor (MS) structure by growing an Ru-doped PVP interlayer between Ag and n-Si using electrospinning technique. To illustrate the utility of the Ru-doped PVP interface layer, current–voltage (I–V) characteristics of Ag/n-Si (MS) and Ag/Ru-doped PVP/n-Si metal–polymer–semiconductor (MPS) structures was carried out. In addition, the main electrical parameters of the fabricated Ag/Ru-doped PVP/n-Si structures were investigated as a function of frequency and electric field using impedance spectroscopy method (ISM). The capacitance–voltage (C–V) plot showed an anomalous peak in the depletion region due to the special density distribution of interface traps/states (D it /N ss) and interlayer. Both the values of series resistance (R s) and N ss were drawn as a function of voltage and frequency between 0.5 kHz and 5 MHz at room temperature and they had a peak behavior in the depletion region. Some important parameters of the sample such as the donor concentration atoms (N D), Fermi energy (E F ), thickness of the depletion region (W D), barrier height (Φ B0 ) and R s were determined from the C −2 versus V plot for each frequency. The values of N D , W D , Φ B0 and R s were changed from 1 × 1015 cm−3, 9.61 × 10−5 cm, 0.94 eV and 19,055 Ω (at 0.5 kHz) to 0.13 × 1015 cm−3, 27.4 × 10−4 cm, 1.04 eV and 70 Ω (at 5 MHz), respectively. As a result of the experiments, it is observed that the change in electrical parameters becomes more effective at lower frequencies due to the N ss and their relaxation time (τ), dipole and surface polarizations.

Journal

Journal of Electronic MaterialsSpringer Journals

Published: Mar 12, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off