Effects of 8-cpt-cAMP on the Epithelial Sodium Channel Expressed in Xenopus Oocytes

Effects of 8-cpt-cAMP on the Epithelial Sodium Channel Expressed in Xenopus Oocytes Vasopressin stimulates the activity of the epithelial Na channel (ENaC) through the cAMP/PKA pathway in the cortical collecting tubule, or in similar amphibian epithelia, but the mechanism of this regulation is not yet understood. This stimulation by cAMP could not be reproduced with the rat or Xenopus ENaC expressed in Xenopus oocyte. Recently, it was shown that the α-subunit cloned from the guinea-pig colon (αgp) could confer the ability to be activated by the membrane-permeant cAMP analogue 8-chlorophenyl-thio-cAMP (cpt-cAMP) to channels produced by expression of αgp, βrat and γrat ENaC subunits. In this study we investigate the mechanism of this activation. Forskolin treatment, endogenous production of cAMP by activation of coexpressed β adrenergic receptors, or intracellular perfusion with cAMP did not increase the amiloride-sensitive Na current, even though these maneuvers stimulated CFTR (cystic fibrosis transmembrane conductance regulator)-mediated Cl currents. In contrast, extracellular 8-cpt-cAMP increased αgp, βrat and γrat ENaC activity but had no effect on CFTR. Swapping intracellular domains between the cpt-cAMP-sensitive αgp and the cpt-cAMP-resistant αrat-subunit showed that neither the N-terminal nor the C-terminal of α ENaC was responsible for the effect of cpt-cAMP. The mechanisms of activation of ENaC by cpt-cAMP and of CFTR by the cAMP/PKA pathway are clearly different. cpt-cAMP seems to increase the activity of ENaC formed by αgp and βγrat by interacting with the extracellular part of the protein. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effects of 8-cpt-cAMP on the Epithelial Sodium Channel Expressed in Xenopus Oocytes

Loading next page...
 
/lp/springer_journal/effects-of-8-cpt-camp-on-the-epithelial-sodium-channel-expressed-in-lbgsHFDf43
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2001 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-001-0049-6
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial