Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effectiveness of crystalline admixtures and lime/cement coated granules in engineered self-healing capacity of lime mortars

Effectiveness of crystalline admixtures and lime/cement coated granules in engineered... Recently, the use of lime mortars in the restoration of historic buildings has found a renewed interest because they can guarantee the required mechanical, chemical and physical compatibility with the existing substrate. Spontaneous occurrence of self-healing phenomena in lime-based mortars is well known; the possibility of engineering the self-healing capacity, through tailored additions, is therefore of the utmost interest with the aim of enhancing the durability of the building masonry restoration works. This work proposes a system for the evaluation of the self-healing capacity with reference to traditional and advanced lime mortars. The autogenous healing capacity of a reference lime mortar has been first of all evaluated. Then, the possibility of engineering the aforementioned capacity has also assessed, through both commercial crystalline admixtures and tailored encapsulated additives. These should work according to a twofold mechanism: first, the coated granules envelope a core of lime mortar with purpose of making it inert during the hardening phase. Secondly, once the coated granules rupture upon cracking and damage of the mortar, the reactive binder is released and undergoes a delayed hardening, which is responsible of the healing phenomena. The results show that the mortar is able to heal micro-cracks; moreover, the addition of the crystalline admixture enhances this capacity. The different kinds of employed coated granules were also able to induce a sensible self-healing, but they decrease the instantaneous compressive strength. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials and Structures Springer Journals

Effectiveness of crystalline admixtures and lime/cement coated granules in engineered self-healing capacity of lime mortars

Loading next page...
 
/lp/springer_journal/effectiveness-of-crystalline-admixtures-and-lime-cement-coated-BQcITbc1bA

References (26)

Publisher
Springer Journals
Copyright
Copyright © 2017 by RILEM
Subject
Engineering; Structural Mechanics; Materials Science, general; Theoretical and Applied Mechanics; Operating Procedures, Materials Treatment; Civil Engineering; Building Materials
ISSN
1359-5997
eISSN
1871-6873
DOI
10.1617/s11527-017-1053-3
Publisher site
See Article on Publisher Site

Abstract

Recently, the use of lime mortars in the restoration of historic buildings has found a renewed interest because they can guarantee the required mechanical, chemical and physical compatibility with the existing substrate. Spontaneous occurrence of self-healing phenomena in lime-based mortars is well known; the possibility of engineering the self-healing capacity, through tailored additions, is therefore of the utmost interest with the aim of enhancing the durability of the building masonry restoration works. This work proposes a system for the evaluation of the self-healing capacity with reference to traditional and advanced lime mortars. The autogenous healing capacity of a reference lime mortar has been first of all evaluated. Then, the possibility of engineering the aforementioned capacity has also assessed, through both commercial crystalline admixtures and tailored encapsulated additives. These should work according to a twofold mechanism: first, the coated granules envelope a core of lime mortar with purpose of making it inert during the hardening phase. Secondly, once the coated granules rupture upon cracking and damage of the mortar, the reactive binder is released and undergoes a delayed hardening, which is responsible of the healing phenomena. The results show that the mortar is able to heal micro-cracks; moreover, the addition of the crystalline admixture enhances this capacity. The different kinds of employed coated granules were also able to induce a sensible self-healing, but they decrease the instantaneous compressive strength.

Journal

Materials and StructuresSpringer Journals

Published: Jun 15, 2017

There are no references for this article.