Effective Size of the Early-Run Sockeye Salmon Oncorhynchus nerka Population of Lake Azabach’e, Kamchatka Peninsula Evaluation of the Effect of Interaction between Subpopulations within a Subdivided Population

Effective Size of the Early-Run Sockeye Salmon Oncorhynchus nerka Population of Lake Azabach’e,... The effect of subdivision on the effective size (N e) of the early-run sockeye salmon Oncorhynchus nerka population of Lake Azabach’e (Kamchatka Peninsula) has been studied. The mode of this effect is determined by the relative productivity of the subpopulations and its magnitude, by the rate of individual migration among subpopulations and genetic differentiation. If the contributions of subpopulations (offspring numbers) are different, genetic differentiation can reduce the N e of the subdivided population. At equal subpopulation contributions, genetic differentiation always increases the N e of the subdivided population in comparison with a panmictic population. We have found that all sockeye salmon subpopulations of Azabach’e Lake produce equal offspring numbers contributing to the next generation. The genetic differentiation between sockeye salmon subpopulations is low, and the subdivision increases the N e of the early-run race with reference to the sum of the effective sizes of the subpopulations by as little as 2%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Effective Size of the Early-Run Sockeye Salmon Oncorhynchus nerka Population of Lake Azabach’e, Kamchatka Peninsula Evaluation of the Effect of Interaction between Subpopulations within a Subdivided Population

Loading next page...
 
/lp/springer_journal/effective-size-of-the-early-run-sockeye-salmon-oncorhynchus-nerka-Yu3hlpgiL0
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics; Microbial Genetics and Genomics; Animal Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1007/s11177-005-0125-6
Publisher site
See Article on Publisher Site

Abstract

The effect of subdivision on the effective size (N e) of the early-run sockeye salmon Oncorhynchus nerka population of Lake Azabach’e (Kamchatka Peninsula) has been studied. The mode of this effect is determined by the relative productivity of the subpopulations and its magnitude, by the rate of individual migration among subpopulations and genetic differentiation. If the contributions of subpopulations (offspring numbers) are different, genetic differentiation can reduce the N e of the subdivided population. At equal subpopulation contributions, genetic differentiation always increases the N e of the subdivided population in comparison with a panmictic population. We have found that all sockeye salmon subpopulations of Azabach’e Lake produce equal offspring numbers contributing to the next generation. The genetic differentiation between sockeye salmon subpopulations is low, and the subdivision increases the N e of the early-run race with reference to the sum of the effective sizes of the subpopulations by as little as 2%.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jun 22, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off