Effective EEG Motion Artifacts Elimination Based on Comparative Interpolation Analysis

Effective EEG Motion Artifacts Elimination Based on Comparative Interpolation Analysis Electroencephalogram (EEG) signal is usually suffered from motion artifacts, generated randomly during signal acquisition timings. These artifacts sturdily affect the investigation and therefore, diagnosis of neural diseases from EEG signal. The artifact removal may cause loss of important information from the signal. Therefore, it is required to remove the motion artifacts and simultaneously preserve the desired information, which makes EEG artifact removal a vital task. Enhanced Empirical Mode Decomposition (EEMD) is the most widespread method used for artifact removal, as it is a data-driven based feature extraction method. In this research work the efficiency of various EEMD with different interpolation based artifact removal method have been compared. The EEMD is used to convert input single channel EEG signal to a multichannel signal, and in order to remove the randomness of motion artifact, CCA and DWT filtering were used successively. The performance of different interpolation based artifact removal methods have evaluated and results indicate that the proposed algorithm is suitable for use as a supplement to algorithms currently in use as it offers improvements in DSNR and various other performance parameters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Effective EEG Motion Artifacts Elimination Based on Comparative Interpolation Analysis

Loading next page...
 
/lp/springer_journal/effective-eeg-motion-artifacts-elimination-based-on-comparative-obL00tM5F9
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4846-3
Publisher site
See Article on Publisher Site

Abstract

Electroencephalogram (EEG) signal is usually suffered from motion artifacts, generated randomly during signal acquisition timings. These artifacts sturdily affect the investigation and therefore, diagnosis of neural diseases from EEG signal. The artifact removal may cause loss of important information from the signal. Therefore, it is required to remove the motion artifacts and simultaneously preserve the desired information, which makes EEG artifact removal a vital task. Enhanced Empirical Mode Decomposition (EEMD) is the most widespread method used for artifact removal, as it is a data-driven based feature extraction method. In this research work the efficiency of various EEMD with different interpolation based artifact removal method have been compared. The EEMD is used to convert input single channel EEG signal to a multichannel signal, and in order to remove the randomness of motion artifact, CCA and DWT filtering were used successively. The performance of different interpolation based artifact removal methods have evaluated and results indicate that the proposed algorithm is suitable for use as a supplement to algorithms currently in use as it offers improvements in DSNR and various other performance parameters.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Aug 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off