Effective dual role catalyst of mixed oxide heterostructure for photocatalyst and electrocatalytic sensing of isoniazid

Effective dual role catalyst of mixed oxide heterostructure for photocatalyst and... The hetero-composite metal oxide nanostructures have received great attention owing to their synergistic microstructural features with distinct functionalities. Herein, CuO–Ce2O3 mixed metal oxide (MMO) was synthesized using facile and effective hydrothermal approach. The catalyst material was characterized with essential analytical techniques to confirm the phase, crystallinity and surface morphology. As an active catalyst, the dual performances of effective photodegradation of methylene blue (MB) and electro-oxidative sensing of Isoniazid (INH) was observed. The photodegradation of MB was investigated in the presence of O2 ·−, OH· radicals and photogenerated holes (h+); among these three, h+ involved efficiently for MB photodegradation under visible light. From the Tauc plot, the bandgap energy for CuO and Ce2O3 were found to ~1.8 and ~2.7 eV respectively. Cyclic voltammetry was used to investigate the electro-oxidation of Isoniazid on CuO–Ce2O3 modified/glassy carbon electrode (GCE). It reveals that MMO can facilitate the electrochemical oxidation of Isoniazid with a great decrease in over potential from 0.8 to 0.4 V at pH 7 phosphate buffer solution. Furthermore, the MMO exhibits excellent catalytic performance towards electro-oxidation of INH over the linear range of 6–50 µM with low detection limit of 0.33 µM at 50 mV scan rate. Thus it can be concluded that MMO/GCE could be a potential bi-functional catalyst for the MB photodegradation and efficient sensing of INH. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Effective dual role catalyst of mixed oxide heterostructure for photocatalyst and electrocatalytic sensing of isoniazid

Loading next page...
 
/lp/springer_journal/effective-dual-role-catalyst-of-mixed-oxide-heterostructure-for-0wt7rDi50V
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-7098-9
Publisher site
See Article on Publisher Site

Abstract

The hetero-composite metal oxide nanostructures have received great attention owing to their synergistic microstructural features with distinct functionalities. Herein, CuO–Ce2O3 mixed metal oxide (MMO) was synthesized using facile and effective hydrothermal approach. The catalyst material was characterized with essential analytical techniques to confirm the phase, crystallinity and surface morphology. As an active catalyst, the dual performances of effective photodegradation of methylene blue (MB) and electro-oxidative sensing of Isoniazid (INH) was observed. The photodegradation of MB was investigated in the presence of O2 ·−, OH· radicals and photogenerated holes (h+); among these three, h+ involved efficiently for MB photodegradation under visible light. From the Tauc plot, the bandgap energy for CuO and Ce2O3 were found to ~1.8 and ~2.7 eV respectively. Cyclic voltammetry was used to investigate the electro-oxidation of Isoniazid on CuO–Ce2O3 modified/glassy carbon electrode (GCE). It reveals that MMO can facilitate the electrochemical oxidation of Isoniazid with a great decrease in over potential from 0.8 to 0.4 V at pH 7 phosphate buffer solution. Furthermore, the MMO exhibits excellent catalytic performance towards electro-oxidation of INH over the linear range of 6–50 µM with low detection limit of 0.33 µM at 50 mV scan rate. Thus it can be concluded that MMO/GCE could be a potential bi-functional catalyst for the MB photodegradation and efficient sensing of INH.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: May 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off