Access the full text.
Sign up today, get DeepDyve free for 14 days.
Discovering the similar groups is a popular primary step in analysis of biomedical data, which cannot be identified manually. Many supervised and unsupervised machine learning and statistical approaches have been developed to solve this problem. Clustering is an unsupervised learning approach, which organizes the data into similar groups, and is used to discover the intrinsic hidden structure of data. In this paper, we used clustering by fast search and find of density peaks (CDP) approach for cancer subtyping and identification of normal tissues from tumor tissues. In additional, we also address the preprocessing and underlying distance matrix’s impact on finalized groups. We have performed extensive experiments on real-world and synthetic cancer gene expression microarray data sets and compared obtained results with state-of-the-art clustering approaches.
Personal and Ubiquitous Computing – Springer Journals
Published: Feb 12, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.