Effect of White and Red Light on the Pigment Content and Functional Activity in Pine Chloroplasts

Effect of White and Red Light on the Pigment Content and Functional Activity in Pine Chloroplasts The pigment content and rates of primary photosynthetic reactions were determined in chloroplasts of 14-day-old pine (Pinus silvestris L.) seedlings grown in light and darkness. In addition, the functional activities were investigated in chloroplasts from dark-grown seedlings exposed to white, red (λ = 670 nm), and red + far-red (λ = 748 nm) light. Dark-grown seedlings were capable of performing the Hill reaction, noncyclic photophosphorylation, and phenazine methosulfate–supported photophosphorylation, although the reaction rates in chloroplasts from dark-grown plants were considerably lower than in preparations from light-grown plants. Light treatment of dark-grown seedlings rapidly activated the photoreduction of ferricyanide and photophosphorylation, while the additional accumulation of green pigments started only after a lag period of two hours. Preirradiation of dark-grown seedlings with red light stimulated the formation of pigments, especially chlorophyll b, as well as the functional activity of chloroplasts. When far-red light was applied after red-light exposure, the processes examined were inhibited. It is concluded that accumulation of the light-harvesting complex and functional activities of chloroplasts at the photosystem II level in pine seedlings are controlled by the phytochrome. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of White and Red Light on the Pigment Content and Functional Activity in Pine Chloroplasts

Loading next page...
 
/lp/springer_journal/effect-of-white-and-red-light-on-the-pigment-content-and-functional-kBwqSBUMH6
Publisher
Springer Journals
Copyright
Copyright © 2000 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1026603011027
Publisher site
See Article on Publisher Site

Abstract

The pigment content and rates of primary photosynthetic reactions were determined in chloroplasts of 14-day-old pine (Pinus silvestris L.) seedlings grown in light and darkness. In addition, the functional activities were investigated in chloroplasts from dark-grown seedlings exposed to white, red (λ = 670 nm), and red + far-red (λ = 748 nm) light. Dark-grown seedlings were capable of performing the Hill reaction, noncyclic photophosphorylation, and phenazine methosulfate–supported photophosphorylation, although the reaction rates in chloroplasts from dark-grown plants were considerably lower than in preparations from light-grown plants. Light treatment of dark-grown seedlings rapidly activated the photoreduction of ferricyanide and photophosphorylation, while the additional accumulation of green pigments started only after a lag period of two hours. Preirradiation of dark-grown seedlings with red light stimulated the formation of pigments, especially chlorophyll b, as well as the functional activity of chloroplasts. When far-red light was applied after red-light exposure, the processes examined were inhibited. It is concluded that accumulation of the light-harvesting complex and functional activities of chloroplasts at the photosystem II level in pine seedlings are controlled by the phytochrome.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 8, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off