Effect of water deficit on respiration of conducting bundles in leaf petioles of sugar beet

Effect of water deficit on respiration of conducting bundles in leaf petioles of sugar beet Isolated fibrovascular bundles from source leaf petioles of sugar beet (Beta vulgaris L.) and hog-weed (Heracleum sosnovskyi L.) were used to study the influence of long-term drought on the oxygen uptake rate and activities of mitochondrial oxidases, i.e., cytochrome oxidase and salicylhydroxamic acid-sensitive alternative oxidase (AO). Under normal soil moisture content (70% of full water-retaining capacity, WRC), the oxygen uptake by sugar beet conducting bundles was characterized by a high rate (> 700 μl O2/(g fr wt h)) and by distinct cytochrome oxidase-dependent manner of terminal oxidation (up to 80% inhibition of respiration in the presence of 0.5 mM KCN). After long-term water deficit (40% of WRC), the bundle respiration proceeded at nearly the same rate but featured an elevated resistance to cyanide. At early drought stage (10 days), a decrease in the activity of cytochrome-mediated oxidation pathway was largely counterbalanced by activation of mitochondrial AO, whereas long-term dehydration of plants was accompanied by activation of additional oxidative systems insensitive to both KCN and SHAM. Similar but even more pronounced changes in activities of terminal oxidases were discovered in conducting bundles of wild-grown hogweed plants exposed to long-term natural drought. It is supposed that the suppression of cytochrome-mediated oxidation coupled with ATP synthesis in the cells of sugar beet source leaves impedes the translocation of assimilates and their accumulation in the taproot, which represents an important factor of drastic decrease in the yield of this agricultural crop under conditions of water deficit. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of water deficit on respiration of conducting bundles in leaf petioles of sugar beet

Loading next page...
Copyright © 2007 by Pleiades Publishing, Ltd.
Life Sciences; Plant Physiology; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial