Effect of tip vortex aperiodicity on measurement uncertainty

Effect of tip vortex aperiodicity on measurement uncertainty Vortex aperiodicity introduces random uncertainty in the measured vortex center location. Unless corrected, this may lead to systematic uncertainty in the vortex properties derived from the measured velocity field. For example, the vortex core size derived from averaged or mean flow field appears larger because of aperiodicity. Several methodologies for aperiodicity correction have been developed over the past two decades to alleviate this systematic uncertainty. However, these do not always reduce the accompanying random uncertainty. The current work shows that the analysis methods used to derive the vortex properties from the measured velocity field play an important role in the resultant random uncertainty in these properties; perhaps, even more important role than the aperiodicity correction methodology itself. It is hypothesized that a class of methods called global methods, which use a large extent of measured data, yield a smaller measurement uncertainty compared to local methods. This hypothesis is verified using a newly proposed global method based on a planar least-squares fit. The general applicability of the method is demonstrated using previous particle image velocimetry measurements of rotor tip vortices. The results clearly demonstrate a reduced random uncertainty in the vortex core properties, even in the presence of secondary vortical structures. Furthermore, the results are independent of the choice of aperiodicity correction methodology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Effect of tip vortex aperiodicity on measurement uncertainty

Loading next page...
 
/lp/springer_journal/effect-of-tip-vortex-aperiodicity-on-measurement-uncertainty-cr4BTUYE76
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by • Springer-Verlag (outside the USA)
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1348-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial