Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea

Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea We evaluated the effect of TiO2 nanoparticles (NPs) on metabolic and molecular traits involved in photosynthesis of two chickpea (Cicer arietinum L.) genotypes (Sel96Th11439, cold tolerant genotype, and ILC533, cold susceptible one) during cold stress (4°C). The data analysis showed that hydrogen peroxide (H2O2) content increased more extremely under cold in susceptible plants than in tolerant ones. TiO2 NPs caused a significant decrease in H2O2 content so that tolerant plants showed lower H2O2 content than susceptible ones. This decrease often was accompanied with higher metabolic potential for photosynthesis particularly in tolerant plants. Under thermal treatments, TiO2 NPs significantly increased the activity of Rubisco compared to control plants although its activity decreased significantly under cold comparison with optimum temperature. Along with a decreasing in H2O2 content, more photosynthetic activity at the transcription levels of CaLRubisco, CaSRubisco and Cachlorophyll a/b-binding protein genes in a simultaneous manner particularly in plants treated with TiO2 NPs ensure the acclimation of plants to survival or recovery. Under such status, phosphoenolpyruvate carboxylase (PEPC) activity increased particularly in tolerant plants compared to susceptible ones as well as in plants treated with TiO2 NPs compared to control plants, indicating probably an increase in energy efficiency through different mechanisms like malate. Thus, chickpea tolerance responses to cold stress may occur after TiO2 NPs application on plants through managing the pressure of temperature decline damage and altered metabolism for plant growth. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea

Loading next page...
 
/lp/springer_journal/effect-of-tio2-nanoparticles-on-metabolic-limitations-to-DCqXqn7pXN
Publisher
Pleiades Publishing
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443715060096
Publisher site
See Article on Publisher Site

Abstract

We evaluated the effect of TiO2 nanoparticles (NPs) on metabolic and molecular traits involved in photosynthesis of two chickpea (Cicer arietinum L.) genotypes (Sel96Th11439, cold tolerant genotype, and ILC533, cold susceptible one) during cold stress (4°C). The data analysis showed that hydrogen peroxide (H2O2) content increased more extremely under cold in susceptible plants than in tolerant ones. TiO2 NPs caused a significant decrease in H2O2 content so that tolerant plants showed lower H2O2 content than susceptible ones. This decrease often was accompanied with higher metabolic potential for photosynthesis particularly in tolerant plants. Under thermal treatments, TiO2 NPs significantly increased the activity of Rubisco compared to control plants although its activity decreased significantly under cold comparison with optimum temperature. Along with a decreasing in H2O2 content, more photosynthetic activity at the transcription levels of CaLRubisco, CaSRubisco and Cachlorophyll a/b-binding protein genes in a simultaneous manner particularly in plants treated with TiO2 NPs ensure the acclimation of plants to survival or recovery. Under such status, phosphoenolpyruvate carboxylase (PEPC) activity increased particularly in tolerant plants compared to susceptible ones as well as in plants treated with TiO2 NPs compared to control plants, indicating probably an increase in energy efficiency through different mechanisms like malate. Thus, chickpea tolerance responses to cold stress may occur after TiO2 NPs application on plants through managing the pressure of temperature decline damage and altered metabolism for plant growth.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 18, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off