Effect of the Temperature on Violaxanthin De-Epoxidation: Comparison of the In Vivo and Model Systems

Effect of the Temperature on Violaxanthin De-Epoxidation: Comparison of the In Vivo and Model... The xanthophyll cycle is a photoprotective mechanism operating in the thylakoid membranes of all higher plants, ferns, mosses and several algal groups. The occurrence of inverted hexagonal domains of monogalactosyldiacylglycerol (MGDG) in the membrane is postulated as an essential factor involved in violaxanthin de-epoxidation. The violaxanthin de-epoxidation was investigated in high-light illuminated Lemna trisulca at three temperatures (4, 12, and 25°C). The temperature dependence of this reaction was compared with kinetics of violaxanthin de-epoxidation at the same temperatures in MGDG micelles and in phosphatidylcholine (PC)–MGDG unilamellar liposomes. In both model systems and in the illuminated plants, a decrease in temperature resulted in lower zeaxanthin production. We found that the presence of MGDG in PC liposomes was necessary for the de-epoxidation reaction. With the increase in MGDG proportion in liposomes, the percentage of transformed violaxanthin was also increasing. We suggest that the violaxanthin de-epoxidation takes place within lipid matrix of the thylakoid membranes inside the MGDG-rich domains. Presence of the reversed hexagonal phase in the thylakoid membranes has been already reported in our previous papers and by other authors using 31P-NMR and freeze-fracturing techniques. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of the Temperature on Violaxanthin De-Epoxidation: Comparison of the In Vivo and Model Systems

Loading next page...
 
/lp/springer_journal/effect-of-the-temperature-on-violaxanthin-de-epoxidation-comparison-of-nRemGrJb8s
Publisher
Springer Journals
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1022912912120
Publisher site
See Article on Publisher Site

Abstract

The xanthophyll cycle is a photoprotective mechanism operating in the thylakoid membranes of all higher plants, ferns, mosses and several algal groups. The occurrence of inverted hexagonal domains of monogalactosyldiacylglycerol (MGDG) in the membrane is postulated as an essential factor involved in violaxanthin de-epoxidation. The violaxanthin de-epoxidation was investigated in high-light illuminated Lemna trisulca at three temperatures (4, 12, and 25°C). The temperature dependence of this reaction was compared with kinetics of violaxanthin de-epoxidation at the same temperatures in MGDG micelles and in phosphatidylcholine (PC)–MGDG unilamellar liposomes. In both model systems and in the illuminated plants, a decrease in temperature resulted in lower zeaxanthin production. We found that the presence of MGDG in PC liposomes was necessary for the de-epoxidation reaction. With the increase in MGDG proportion in liposomes, the percentage of transformed violaxanthin was also increasing. We suggest that the violaxanthin de-epoxidation takes place within lipid matrix of the thylakoid membranes inside the MGDG-rich domains. Presence of the reversed hexagonal phase in the thylakoid membranes has been already reported in our previous papers and by other authors using 31P-NMR and freeze-fracturing techniques.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off