Effect of the surface topography and chemistry of poly(3-hydroxybutyrate) substrates on cellular behavior of the murine neuroblastoma Neuro2a cell line

Effect of the surface topography and chemistry of poly(3-hydroxybutyrate) substrates on cellular... Interactions between cells and substrates play an important role in tissue development during the process of tissue regeneration. Substrates that mimic the surface topography and chemical composition of the extracellular matrix (ECM) lead to enhanced cellular interactions. Electrospinning can easily produce aligned fibrous substrates with an architecture that structurally resembles tissue ECM and can provide contact guidance during tissue regeneration. However, the sole use of substrate materials may not be sufficient for the treatment of damaged tissue due to a lack of biochemical guidance, which helps to promote cell adhesion and proliferation. In the present contribution, we evaluated the effect of the surface properties of various surface-modified electrospun fibrous and solution-cast film PHB substrates in vitro on the murine neuroblastoma Neuro2a cell line. A neat electrospun fibrous and a solution-cast PHB scaffolds were used as the internal control. The results from cell studies suggest that the laminin–PHB fibrous substrate provided better support for the attachment and proliferation of Neuro2a cells than the other substrates. The cellular viability increased from 116% for 4 h of cell seeding to 187% for 3 days of cell seeding. These results suggest that the surface topography and chemistry significantly impact the Neuro2a cell line. The introduction of contact guidance, such as that provided by the fiber diameter and alignment, and biochemical guidance, such as that achieved by the immobilization of adhesive proteins, enhanced cell attachment and proliferation. These results emphasize the importance of surface properties with respect to cellular behavior. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Bulletin Springer Journals

Effect of the surface topography and chemistry of poly(3-hydroxybutyrate) substrates on cellular behavior of the murine neuroblastoma Neuro2a cell line

Loading next page...
 
/lp/springer_journal/effect-of-the-surface-topography-and-chemistry-of-poly-3-VxLW3XcStR
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Polymer Sciences; Soft and Granular Matter, Complex Fluids and Microfluidics; Characterization and Evaluation of Materials; Physical Chemistry; Organic Chemistry
ISSN
0170-0839
eISSN
1436-2449
D.O.I.
10.1007/s00289-017-1947-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial