Effect of the pho85 Mutation on Catabolite Repression of the CIT1 Gene in Yeasts Saccharomyces cerevisiae

Effect of the pho85 Mutation on Catabolite Repression of the CIT1 Gene in Yeasts Saccharomyces... The Krebs cycle is one of the major metabolic pathways in a cell, which includes both catabolic and anabolic reactions. The first enzyme of the Krebs cycle, citrate synthase, catalyzes one of a few irreversible reactions of the cycle, citrate formation from acetyl-CoA and oxaloacetate. Expression of the CIT1 gene encoding the mitochondrial form of this enzyme inSaccharomyces cerevisiae is repressed on glucose- and glutamate-containing medium and activated on the raffinose-containing medium. In this work, the dependence of glucose repression of the CIT1 gene on the content of phosphate in the medium was studied. On the phosphate-deficient medium, the level of the CIT1 gene expression was increased twice. A low-molecular-weight (about 34 kDa) protein was identified and shown to interact with a region of the CIT1gene promoter (from –367 to –348 bp), which controls the glucose repression. The results obtained suggest that the Pho4 protein is involved in regulation of the CIT1gene expression on the glucose-containing and phosphate-deficient medium. Disruption of the PHO85 gene encoding phosphoprotein kinase (Pho4p is the substrate of this enzyme) leads to alleviation of glucose repression of the CIT1 gene. Thus, in yeast cells grown in the presence of glucose, the PHO85gene mediates downregulation of theCIT1expression. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Effect of the pho85 Mutation on Catabolite Repression of the CIT1 Gene in Yeasts Saccharomyces cerevisiae

Loading next page...
 
/lp/springer_journal/effect-of-the-pho85-mutation-on-catabolite-repression-of-the-cit1-gene-6C0GSS0Klj
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/A:1024489322873
Publisher site
See Article on Publisher Site

Abstract

The Krebs cycle is one of the major metabolic pathways in a cell, which includes both catabolic and anabolic reactions. The first enzyme of the Krebs cycle, citrate synthase, catalyzes one of a few irreversible reactions of the cycle, citrate formation from acetyl-CoA and oxaloacetate. Expression of the CIT1 gene encoding the mitochondrial form of this enzyme inSaccharomyces cerevisiae is repressed on glucose- and glutamate-containing medium and activated on the raffinose-containing medium. In this work, the dependence of glucose repression of the CIT1 gene on the content of phosphate in the medium was studied. On the phosphate-deficient medium, the level of the CIT1 gene expression was increased twice. A low-molecular-weight (about 34 kDa) protein was identified and shown to interact with a region of the CIT1gene promoter (from –367 to –348 bp), which controls the glucose repression. The results obtained suggest that the Pho4 protein is involved in regulation of the CIT1gene expression on the glucose-containing and phosphate-deficient medium. Disruption of the PHO85 gene encoding phosphoprotein kinase (Pho4p is the substrate of this enzyme) leads to alleviation of glucose repression of the CIT1 gene. Thus, in yeast cells grown in the presence of glucose, the PHO85gene mediates downregulation of theCIT1expression.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 7, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off