Effect of the nature of vitiated crossflow on the flow-field of a transverse reacting jet

Effect of the nature of vitiated crossflow on the flow-field of a transverse reacting jet The effect of the nature of vitiated crossflow on the structure and dynamics of non-reacting/reacting transverse jets is investigated. In this study, the vitiated crossflow is produced either by a low-swirl burner (LSB) that adds a swirling component to the crossflow or a bluff-body burner (BBB) that produces a uniform crossflow. The jet fluid is injected through a contoured injector, which provides a top-hat velocity profile. The swirling crossflow exhibits considerable swirl at the point of injection of the transverse jet. Two component high-repetition-rate PIV measurements demonstrate the influence of a vitiated crossflow generated by a low-swirl/bluff-body burner on the near-wake flow-field of the jet. Measurements at a plane below the injection location of the jet indicate that there is a continuous entrainment of PIV particles in case of swirling crossflow. The time-averaged flow-field shows that the velocity field for reacting/non-reacting jets in the LSB crossflow exhibits higher velocity gradients, in the measurement plane along jet cross section, as compared to BBB crossflow. It is found that the vorticity magnitude is lower in case of jets in the BBB crossflow and there is a delay in the formation of the wake vortex structure. The conditional turbulent statistics of the jet flow-field in the two crossflows shows that there is a higher degree of intermittency related to the wake vortex structure in case of a BBB crossflow, which results in a non-Gaussian distribution of the turbulent statistics. The wake Strouhal number calculation shows the influence of the nature of crossflow on the rate of wake vortex shedding. The wake Strouhal number for the jets in BBB crossflow is found to be lower than for the LSB crossflow. A decrease in the wake Strouhal number is observed with an increase in the nozzle separation distance. There is an increase in the dilatation rate owing to heat release which results in higher wake Strouhal number for reacting jets as compared to non-reacting jets. The POD analysis of the reacting and non-reacting jets shows the wake vortex structures to be the dominant flow structures in this study. There is a redistribution of turbulent kinetic energy from the shear layer to the coherent wake vortex structure with an increase in the nozzle separation distance. The wake structures in the near-wake region of jets in LSB crossflow are found to have a larger contribution to the kinetic energy as compared to jets in BBB crossflow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Effect of the nature of vitiated crossflow on the flow-field of a transverse reacting jet

Loading next page...
 
/lp/springer_journal/effect-of-the-nature-of-vitiated-crossflow-on-the-flow-field-of-a-8FFLhrqFP0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2288-4
Publisher site
See Article on Publisher Site

Abstract

The effect of the nature of vitiated crossflow on the structure and dynamics of non-reacting/reacting transverse jets is investigated. In this study, the vitiated crossflow is produced either by a low-swirl burner (LSB) that adds a swirling component to the crossflow or a bluff-body burner (BBB) that produces a uniform crossflow. The jet fluid is injected through a contoured injector, which provides a top-hat velocity profile. The swirling crossflow exhibits considerable swirl at the point of injection of the transverse jet. Two component high-repetition-rate PIV measurements demonstrate the influence of a vitiated crossflow generated by a low-swirl/bluff-body burner on the near-wake flow-field of the jet. Measurements at a plane below the injection location of the jet indicate that there is a continuous entrainment of PIV particles in case of swirling crossflow. The time-averaged flow-field shows that the velocity field for reacting/non-reacting jets in the LSB crossflow exhibits higher velocity gradients, in the measurement plane along jet cross section, as compared to BBB crossflow. It is found that the vorticity magnitude is lower in case of jets in the BBB crossflow and there is a delay in the formation of the wake vortex structure. The conditional turbulent statistics of the jet flow-field in the two crossflows shows that there is a higher degree of intermittency related to the wake vortex structure in case of a BBB crossflow, which results in a non-Gaussian distribution of the turbulent statistics. The wake Strouhal number calculation shows the influence of the nature of crossflow on the rate of wake vortex shedding. The wake Strouhal number for the jets in BBB crossflow is found to be lower than for the LSB crossflow. A decrease in the wake Strouhal number is observed with an increase in the nozzle separation distance. There is an increase in the dilatation rate owing to heat release which results in higher wake Strouhal number for reacting jets as compared to non-reacting jets. The POD analysis of the reacting and non-reacting jets shows the wake vortex structures to be the dominant flow structures in this study. There is a redistribution of turbulent kinetic energy from the shear layer to the coherent wake vortex structure with an increase in the nozzle separation distance. The wake structures in the near-wake region of jets in LSB crossflow are found to have a larger contribution to the kinetic energy as compared to jets in BBB crossflow.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off