Effect of the carbon component on the electrical and optical properties of nanocellulose-based composites

Effect of the carbon component on the electrical and optical properties of nanocellulose-based... The results of X-ray studies of the structure of components of composite materials based on milled microcrystalline cellulose are presented. The 3D model of the atomic arrangement in the short-range order of amorphous carbon can be described by a mechanical mixture of two types of clusters in the ratio of 1 : 2. One type of clusters is formed by two planar graphene single layers shifted relative to each other and containing vacancies, and the other type is presented by six graphene grids. The cellulose matrix with silicon nanoparticles has a low photoluminescence-signal degradation rate. The introduction of fullerenes into nanomaterial as a third nanofraction, as well as the action of ozone, leads to anomalous luminescence kinetics under UV (ultraviolet) photoexcitation, which can be associated with competing processes of hydrogen and oxygen adsorption on the surface of silicon nanoparticles. A change in the ionic conductivity of the porous cellulose matrix upon exposure to ozone can be used to develop effective ozone detectors. Such a filler as amorphous-crystalline carbon causes not only ionic but also electronic conductivity in the sample; however, the processes of space-charge redistribution remain dependent only on the ion-current component. An increase in the total current passing through the pressed sample eliminates the need for a further increase in the signal in the design of ozone sensors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Springer Journals

Effect of the carbon component on the electrical and optical properties of nanocellulose-based composites

Loading next page...
Pleiades Publishing
Copyright © 2017 by Pleiades Publishing, Ltd.
Materials Science; Surfaces and Interfaces, Thin Films
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial