Effect of Temperature on Diurnal Changes in CO2 Exchange in Intact Cucumber Plants

Effect of Temperature on Diurnal Changes in CO2 Exchange in Intact Cucumber Plants Multifactorial experiments were performed to study the diurnal dynamics of CO2 exchange in intact cucumber plants (Cucumis sativus L.). Based on experimental data, we analyzed the models of net photosynthesis, night respiration, and biomass accumulation. This analysis allowed us to resolve the growth component of respiration and to determine the diurnal temperature pattern that is optimal for biomass accumulation. It was found that the most profound transformation of assimilates into the biomass occurs under the maximum ratio of growth respiration to maintenance respiration. Under the experimental conditions used, this requirement was fulfilled at a temperature of 25°C during the photoperiod (optimum of net photosynthesis) and at subsequent gradual cooling to a hardening temperature (13°C by the end of the night). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of Temperature on Diurnal Changes in CO2 Exchange in Intact Cucumber Plants

Loading next page...
 
/lp/springer_journal/effect-of-temperature-on-diurnal-changes-in-co2-exchange-in-intact-Zh5asg9IBs
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1022964928958
Publisher site
See Article on Publisher Site

Abstract

Multifactorial experiments were performed to study the diurnal dynamics of CO2 exchange in intact cucumber plants (Cucumis sativus L.). Based on experimental data, we analyzed the models of net photosynthesis, night respiration, and biomass accumulation. This analysis allowed us to resolve the growth component of respiration and to determine the diurnal temperature pattern that is optimal for biomass accumulation. It was found that the most profound transformation of assimilates into the biomass occurs under the maximum ratio of growth respiration to maintenance respiration. Under the experimental conditions used, this requirement was fulfilled at a temperature of 25°C during the photoperiod (optimum of net photosynthesis) and at subsequent gradual cooling to a hardening temperature (13°C by the end of the night).

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off