Effect of synthesis variables on viscoelastic properties of elastomers filled with carbonyl iron powder

Effect of synthesis variables on viscoelastic properties of elastomers filled with carbonyl iron... This work studies the influence of synthesis variables on the lineal viscoelastic properties of elastomers filled with soft magnetic particles. Three matrices [natural rubber (NR), high-temperature vulcanising silicone rubber (HTV-SR), and room-temperature vulcanising (RTV-SR)] and three volumetric particle contents (0%, 15%, and 30%) were studied. Anisotropic samples were synthesised with a softer matrix to obtain a larger magnetorheological (MR) effect, and the variation of their properties under an external magnetic field was examined. All samples were characterised within the lineal viscoelastic (LVE) region using a rheometer, because the MR effect is larger within this region. The influence of the matrix, particle content, and pre-structure on the viscoelastic properties of the synthesised samples was studied. The storage and loss modulus increased with the frequency owing to the viscoelastic behaviour of an elastomer in the rubbery phase. Both moduli also increased with the filler content. The influence of the filler is dependent on the matrix, and the maximum variation was seen in the NR-based samples. However, the maximum MR effect was seen in the samples with a softer matrix, and the effect was enhanced in the anisotropic samples. In this work, the MR effect on the loss modulus was studied, and the tendencies were found to be similar to those of the storage modulus. The main contribution of this work is that all dynamic behaviour results were comparable because all synthesis variables and characterisation conditions were identical. Therefore, how the particle content, frequency, and magnetic field affects each matrix can be studied. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Polymer Research Springer Journals

Effect of synthesis variables on viscoelastic properties of elastomers filled with carbonyl iron powder

Loading next page...
Springer Netherlands
Copyright © 2017 by Springer Science+Business Media B.V.
Chemistry; Polymer Sciences; Industrial Chemistry/Chemical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial