Effect of surplus glucose on physiological and biochemical characteristics of sugar beet leaves in relation to the age of the leaf and the whole plant

Effect of surplus glucose on physiological and biochemical characteristics of sugar beet leaves... Effect of surplus glucose on physiological and biochemical parameters of leaves of different age was investigated in sugar beet (Beta vulgaris L., subsp. saccharifera) plants in the stages of vegetative growth (SVG). Early and late SVG were differentiated by the ratio between the weights of roots and aboveground organs (0.10 and 0.35, respectively). The excess of Glu was produced by incubation of the disks excised from detached leaves in water or 0.1 M Glu at radiant flux density of 250 μmol/(m2 s) with the light regime pattern described as night/day/night/light (8/16/8/3 h). In all the leaf disks incubated in water and glucose solution, the content of Glu and other soluble carbohydrates considerably increased as compared with their content in the leaves they were taken from. After disk incubation in water and glucose solution, the content of chlorophyll (a + b) rose as compared with its level in respective leaves in early SVG; in late SVG, it declined. In early SVG, the rate of the O2 photosynthetic evolution (Ph) in the ageing leaves under saturating concentration of NaHCO3 after incubation in water and Glu solution declined more considerably than in young leaves. In late SVG, incubation of leaf disks in water and Glu solution weakly affected P n. The rate of O2 dark consumption in the leaf disks of all the types of treatment increased after incubation in water and especially in Glu solution. Activity of soluble carbonic anhydrase (sCA) in the extracts from young leaves in early SVG after their incubation in water and Glu solution was essentially the same, but after the incubation of ageing leaves in Glu solution, it reliably decreased. In late SVG, sCA activity sharply decreased after incubation in water and Glu solution irrespective of the leaf age. In late SVG, activity of Rubisco in the young leaves did not change after their incubation in water but decreased after incubation of the leaves of the three ages in Glu solution. In early SVG, nonphotochemical fluorescence quenching (NPQ) in the young intact leaf was lower than in the ageing leaf, and after leaf incubation in water and Glu solution, it rose. In late SVG, the value of NPQ was greater than in early SVG and, in contrast to the leaves of early SVG, it declined after leaf incubation; in water, this decline was more pronounced than in the Glu solution. In early SVG, efficient quantum yield of photosystem II (PSII) was much greater than in late SVG and it declined in the leaves incubated with Glu. It was concluded that surplus Glu can maintain biosynthetic processes in the young leaves of young sugar beet plants (trophic function). A decline in the level of chlorophyll and the activities of sCA and Rubisco in the course of leaf development and senescence is considered as a symptom of the suppression of biosynthesis of proteins of chlorophyll-protein complexes and the enzymes (Rubisco and sCA). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of surplus glucose on physiological and biochemical characteristics of sugar beet leaves in relation to the age of the leaf and the whole plant

Loading next page...
 
/lp/springer_journal/effect-of-surplus-glucose-on-physiological-and-biochemical-TyUjRnS0SP
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2008 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443708020064
Publisher site
See Article on Publisher Site

Abstract

Effect of surplus glucose on physiological and biochemical parameters of leaves of different age was investigated in sugar beet (Beta vulgaris L., subsp. saccharifera) plants in the stages of vegetative growth (SVG). Early and late SVG were differentiated by the ratio between the weights of roots and aboveground organs (0.10 and 0.35, respectively). The excess of Glu was produced by incubation of the disks excised from detached leaves in water or 0.1 M Glu at radiant flux density of 250 μmol/(m2 s) with the light regime pattern described as night/day/night/light (8/16/8/3 h). In all the leaf disks incubated in water and glucose solution, the content of Glu and other soluble carbohydrates considerably increased as compared with their content in the leaves they were taken from. After disk incubation in water and glucose solution, the content of chlorophyll (a + b) rose as compared with its level in respective leaves in early SVG; in late SVG, it declined. In early SVG, the rate of the O2 photosynthetic evolution (Ph) in the ageing leaves under saturating concentration of NaHCO3 after incubation in water and Glu solution declined more considerably than in young leaves. In late SVG, incubation of leaf disks in water and Glu solution weakly affected P n. The rate of O2 dark consumption in the leaf disks of all the types of treatment increased after incubation in water and especially in Glu solution. Activity of soluble carbonic anhydrase (sCA) in the extracts from young leaves in early SVG after their incubation in water and Glu solution was essentially the same, but after the incubation of ageing leaves in Glu solution, it reliably decreased. In late SVG, sCA activity sharply decreased after incubation in water and Glu solution irrespective of the leaf age. In late SVG, activity of Rubisco in the young leaves did not change after their incubation in water but decreased after incubation of the leaves of the three ages in Glu solution. In early SVG, nonphotochemical fluorescence quenching (NPQ) in the young intact leaf was lower than in the ageing leaf, and after leaf incubation in water and Glu solution, it rose. In late SVG, the value of NPQ was greater than in early SVG and, in contrast to the leaves of early SVG, it declined after leaf incubation; in water, this decline was more pronounced than in the Glu solution. In early SVG, efficient quantum yield of photosystem II (PSII) was much greater than in late SVG and it declined in the leaves incubated with Glu. It was concluded that surplus Glu can maintain biosynthetic processes in the young leaves of young sugar beet plants (trophic function). A decline in the level of chlorophyll and the activities of sCA and Rubisco in the course of leaf development and senescence is considered as a symptom of the suppression of biosynthesis of proteins of chlorophyll-protein complexes and the enzymes (Rubisco and sCA).

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jan 20, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off