Effect of surface steps on boundary layer transition

Effect of surface steps on boundary layer transition An experimental study has been carried out to examine the effect of a sharp-edged step on boundary layer transition. The transition position and disturbance spectra in the boundary layer for different step heights and free-stream velocities were measured by hot-wire anemometry. A correlation between the transition Reynolds number and the relative step height has been established for both backward-facing and forward-facing steps. The transition position is associated with the “N-factor” that defines the integrated growth of instability waves at transition. The boundary layer over a step has an earlier transition position than that on a smooth plate, since the instability waves amplify more rapidly than those on a smooth surface. The transition N-factor for the flow containing a step, calculated using the amplification rates on a smooth plate, will, therefore, be smaller than that on surfaces without a step. The observed reduction of the N-factor occurring with a step has been shown to correlate with the height of the step, thus, providing an empirical tool that can be used to estimate the transition position when steps occur. An appropriate value of N can be determined from knowledge of the step height. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Effect of surface steps on boundary layer transition

Loading next page...
Copyright © 2005 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial