Effect of supercritical fluid of CO2 drying during Cu/ZnO catalyst preparation on methanol synthesis from syngas at low temperature

Effect of supercritical fluid of CO2 drying during Cu/ZnO catalyst preparation on methanol... A copper-based catalyst can be utilized to synthesize methanol from syngas containing carbon dioxide as well as water at low temperature and low pressure. However, the agglomeration of the metallic copper and zinc oxide decreased the catalyst surface area and the Cu-specific surface area. In order to prevent the sintering, the supercritical CO2 was used to extract water from the catalyst precursor. Our results demonstrate that the Cu-specific surface area was the essential factor to affect the catalytic activity. A larger Cu-specific surface area would cause higher methanol synthesis activity. The optimized supercritical CO2 drying condition was at 308 K and 8.0 MPa for 3 h when the methanol yield reached 44.8%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Effect of supercritical fluid of CO2 drying during Cu/ZnO catalyst preparation on methanol synthesis from syngas at low temperature

Loading next page...
 
/lp/springer_journal/effect-of-supercritical-fluid-of-co2-drying-during-cu-zno-catalyst-a23VL90LAP
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0253-7
Publisher site
See Article on Publisher Site

Abstract

A copper-based catalyst can be utilized to synthesize methanol from syngas containing carbon dioxide as well as water at low temperature and low pressure. However, the agglomeration of the metallic copper and zinc oxide decreased the catalyst surface area and the Cu-specific surface area. In order to prevent the sintering, the supercritical CO2 was used to extract water from the catalyst precursor. Our results demonstrate that the Cu-specific surface area was the essential factor to affect the catalytic activity. A larger Cu-specific surface area would cause higher methanol synthesis activity. The optimized supercritical CO2 drying condition was at 308 K and 8.0 MPa for 3 h when the methanol yield reached 44.8%.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Feb 3, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off