Effect of Substrate Composition on Whisker Growth in Sn Coatings

Effect of Substrate Composition on Whisker Growth in Sn Coatings Whisker growth was studied in Sn coatings deposited on three different substrates, namely pure Cu, brass (Cu-35 wt.% Zn) and pure Ni. Additionally, the effect of a Ni under-layer (electro- or sputter-deposited and placed between the Sn coating and the substrate) on whisker growth was also studied. It was observed that the substrate composition and placement of under-layers significantly affected the whisker growth in Sn coating by altering the growth rate and the morphology of the interfacial intermetallic compounds (IMC). Whisker propensity was the highest when Sn coatings were deposited directly on the brass substrate, while it was completely inhibited for at least a year when the coatings were deposited on either pure Ni or brass with a Ni under-layer. Bulk and surface stress measurements revealed that the surface of the Sn coatings on Ni, irrespective of whether it was in bulk or under-layer form, remained more compressive as compared to the bulk, throughout the observation period. Therefore, a negative out-of-plane stress gradient, which is crucial for whisker growth, could never be established in these samples. Interestingly, a phenomenon of through-thickness columnar voiding (reverse of whiskering) was observed in the Sn coatings deposited on Ni. The origin of this phenomenon is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Electronic Materials Springer Journals

Effect of Substrate Composition on Whisker Growth in Sn Coatings

Loading next page...
 
/lp/springer_journal/effect-of-substrate-composition-on-whisker-growth-in-sn-coatings-iELKWCm3Y1
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Minerals, Metals & Materials Society
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials; Electronics and Microelectronics, Instrumentation; Solid State Physics
ISSN
0361-5235
eISSN
1543-186X
D.O.I.
10.1007/s11664-018-6275-9
Publisher site
See Article on Publisher Site

Abstract

Whisker growth was studied in Sn coatings deposited on three different substrates, namely pure Cu, brass (Cu-35 wt.% Zn) and pure Ni. Additionally, the effect of a Ni under-layer (electro- or sputter-deposited and placed between the Sn coating and the substrate) on whisker growth was also studied. It was observed that the substrate composition and placement of under-layers significantly affected the whisker growth in Sn coating by altering the growth rate and the morphology of the interfacial intermetallic compounds (IMC). Whisker propensity was the highest when Sn coatings were deposited directly on the brass substrate, while it was completely inhibited for at least a year when the coatings were deposited on either pure Ni or brass with a Ni under-layer. Bulk and surface stress measurements revealed that the surface of the Sn coatings on Ni, irrespective of whether it was in bulk or under-layer form, remained more compressive as compared to the bulk, throughout the observation period. Therefore, a negative out-of-plane stress gradient, which is crucial for whisker growth, could never be established in these samples. Interestingly, a phenomenon of through-thickness columnar voiding (reverse of whiskering) was observed in the Sn coatings deposited on Ni. The origin of this phenomenon is discussed.

Journal

Journal of Electronic MaterialsSpringer Journals

Published: Apr 12, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off