Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effect of streamwise spacing on periodic and random unsteadiness in a bundle of short cylinders confined in a channel

Effect of streamwise spacing on periodic and random unsteadiness in a bundle of short cylinders... While flow across long tube bundles is considered classical data, pin-fin arrays made up of short tubes have become a growing topic of interest for use in cooling gas turbine airfoils. Data from the literature indicate that decreasing streamwise spacing increases heat transfer in pin-fin arrays; however, the specific mechanism that causes increased heat transfer coefficients remains unknown. The present work makes use of time-resolved PIV to quantify the effects of streamwise spacing on the turbulent near wake throughout various pin-fin array spacings. Specifically, proper orthogonal decomposition was used to separate the (quasi-) periodic motion from vortex shedding and the random motion from turbulent eddies. Reynolds number flow conditions of 3.0 × 103 and 2.0 × 104, based on pin-fin diameter and velocity at the minimum flow area, were considered. Streamwise spacing was varied from 3.46 pin diameters to 1.73 pin diameters while the pin-fin height-to-diameter ratio was unity and the spanwise spacing was held constant at two diameters. Results indicated that (quasi-) periodic motions were attenuated at closer streamwise spacings while the level of random motions was not strongly dependent on pin-fin spacing. This trend was observed at both Reynolds number conditions considered. Because closer spacings exhibit higher heat transfer levels, the present results imply that periodic motions may not contribute to heat transfer, although further experimentation is required. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Effect of streamwise spacing on periodic and random unsteadiness in a bundle of short cylinders confined in a channel

Experiments in Fluids , Volume 53 (6) – Oct 6, 2012

Loading next page...
 
/lp/springer_journal/effect-of-streamwise-spacing-on-periodic-and-random-unsteadiness-in-a-pO0ZwQGg82

References (35)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
DOI
10.1007/s00348-012-1394-1
Publisher site
See Article on Publisher Site

Abstract

While flow across long tube bundles is considered classical data, pin-fin arrays made up of short tubes have become a growing topic of interest for use in cooling gas turbine airfoils. Data from the literature indicate that decreasing streamwise spacing increases heat transfer in pin-fin arrays; however, the specific mechanism that causes increased heat transfer coefficients remains unknown. The present work makes use of time-resolved PIV to quantify the effects of streamwise spacing on the turbulent near wake throughout various pin-fin array spacings. Specifically, proper orthogonal decomposition was used to separate the (quasi-) periodic motion from vortex shedding and the random motion from turbulent eddies. Reynolds number flow conditions of 3.0 × 103 and 2.0 × 104, based on pin-fin diameter and velocity at the minimum flow area, were considered. Streamwise spacing was varied from 3.46 pin diameters to 1.73 pin diameters while the pin-fin height-to-diameter ratio was unity and the spanwise spacing was held constant at two diameters. Results indicated that (quasi-) periodic motions were attenuated at closer streamwise spacings while the level of random motions was not strongly dependent on pin-fin spacing. This trend was observed at both Reynolds number conditions considered. Because closer spacings exhibit higher heat transfer levels, the present results imply that periodic motions may not contribute to heat transfer, although further experimentation is required.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 6, 2012

There are no references for this article.