Effect of static magnetic field on microstructures and mechanical properties of laser-MIG hybrid welding for 304 stainless steel

Effect of static magnetic field on microstructures and mechanical properties of laser-MIG hybrid... In this study, a method combining magnetic, MIG, and laser was applied to weld the 304 stainless steel with a thickness of 4 mm. The effect of magnetic field on the weld microstructures and mechanical properties was investigated. The weld geometry and microstructure were characterized by optical microscope (OM) and scanning electric microscopy. Electron back scattered diffraction (EBSD) was used to determine the grain sizes and crystallographic orientations. Residual stress and tensile stress of welds were measured and compared with the laser-arc hybrid welds without an external magnetic field. The results showed that with an appropriate magnetic field intensity, an optimal joint was obtained with tensile strength enhanced by nearly 12% and tensile residual stresses reduced. In addition, the grain refining and promotion of the phase transformation with the magnetic field were analyzed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Effect of static magnetic field on microstructures and mechanical properties of laser-MIG hybrid welding for 304 stainless steel

Loading next page...
 
/lp/springer_journal/effect-of-static-magnetic-field-on-microstructures-and-mechanical-XooS6TgKYC
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0006-x
Publisher site
See Article on Publisher Site

Abstract

In this study, a method combining magnetic, MIG, and laser was applied to weld the 304 stainless steel with a thickness of 4 mm. The effect of magnetic field on the weld microstructures and mechanical properties was investigated. The weld geometry and microstructure were characterized by optical microscope (OM) and scanning electric microscopy. Electron back scattered diffraction (EBSD) was used to determine the grain sizes and crystallographic orientations. Residual stress and tensile stress of welds were measured and compared with the laser-arc hybrid welds without an external magnetic field. The results showed that with an appropriate magnetic field intensity, an optimal joint was obtained with tensile strength enhanced by nearly 12% and tensile residual stresses reduced. In addition, the grain refining and promotion of the phase transformation with the magnetic field were analyzed.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Jan 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off