Effect of spermine treatment on the functioning of Thellungiella salsuginea antioxidant system

Effect of spermine treatment on the functioning of Thellungiella salsuginea antioxidant system The effect of spermine (Spm) treatment on the content of polyamines (PAs) and activities of antioxidant enzymes in the roots and leaves of Thellungiella salsuginea (Pall.) O.E. Schulz plants grown under optimal conditions were studied. The genes encoding three forms of ascorbate peroxidase (APX; APX1, APX2, and APX4) and genes of key enzymes of proline metabolism (Pro, P5CS1, 1P5CD) were identified, and their expression intensity was measured. Six-day-old plants were treated with Spm (1 and 2 mM) and with the inhibitor of polyamine oxidase (PAO) activity, N,N-(2-hydroxyethyl)hydrazine (HEH, 1 and 2 mM) separately or in combination by adding these compounds to nutrient medium. Roots and leaves responded differently to Spm treatment. In the leaves, the content of PAs reduced due to a decreased in the spermidine (Spd) content, whereas in the roots the total pool of PAs increased due to putrescine (Put) and Spd accumulation. Treatment with Spm activated PAO in the roots but not in the leaves; HEH removed this increase, but the intercellular Spm concentration was not substantially changed. It was suggested that treatment with Spm suppressed the biosynthesis of intracellular Spm and, on the other hand, stimulated the reverse conversion of Spm into Spd and further into Put due to the activation of one of the PAO isoforms. Plant treatment with Spm was not accompanied by a noticeable activation enzymes degrading hydrogen peroxide in the roots: APX, (except of peroxidase II), and catalase. However, the activity of Cu/Zn-SOD doubled and the activity of Mn-SOD reduced. In the leaves, slight activation of peroxidases I and III, the inhibition of Cu/Zn- and Mn-SOD, differential changes in the time-coursed of gene expression of three APX isoforms, and activated gene expression of key enzymes of Pro metabolism were observed. At the same time, the level of MDA did not increase either in the leaves or in the roots. This indicates that treatment of Th. salsuginea plants with Spm under optimal growing conditions did not enhance ROS generation and did not manifest prooxidant properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of spermine treatment on the functioning of Thellungiella salsuginea antioxidant system

Loading next page...
 
/lp/springer_journal/effect-of-spermine-treatment-on-the-functioning-of-thellungiella-W7OJqMH0jI
Publisher
Springer Journals
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443714010075
Publisher site
See Article on Publisher Site

Abstract

The effect of spermine (Spm) treatment on the content of polyamines (PAs) and activities of antioxidant enzymes in the roots and leaves of Thellungiella salsuginea (Pall.) O.E. Schulz plants grown under optimal conditions were studied. The genes encoding three forms of ascorbate peroxidase (APX; APX1, APX2, and APX4) and genes of key enzymes of proline metabolism (Pro, P5CS1, 1P5CD) were identified, and their expression intensity was measured. Six-day-old plants were treated with Spm (1 and 2 mM) and with the inhibitor of polyamine oxidase (PAO) activity, N,N-(2-hydroxyethyl)hydrazine (HEH, 1 and 2 mM) separately or in combination by adding these compounds to nutrient medium. Roots and leaves responded differently to Spm treatment. In the leaves, the content of PAs reduced due to a decreased in the spermidine (Spd) content, whereas in the roots the total pool of PAs increased due to putrescine (Put) and Spd accumulation. Treatment with Spm activated PAO in the roots but not in the leaves; HEH removed this increase, but the intercellular Spm concentration was not substantially changed. It was suggested that treatment with Spm suppressed the biosynthesis of intracellular Spm and, on the other hand, stimulated the reverse conversion of Spm into Spd and further into Put due to the activation of one of the PAO isoforms. Plant treatment with Spm was not accompanied by a noticeable activation enzymes degrading hydrogen peroxide in the roots: APX, (except of peroxidase II), and catalase. However, the activity of Cu/Zn-SOD doubled and the activity of Mn-SOD reduced. In the leaves, slight activation of peroxidases I and III, the inhibition of Cu/Zn- and Mn-SOD, differential changes in the time-coursed of gene expression of three APX isoforms, and activated gene expression of key enzymes of Pro metabolism were observed. At the same time, the level of MDA did not increase either in the leaves or in the roots. This indicates that treatment of Th. salsuginea plants with Spm under optimal growing conditions did not enhance ROS generation and did not manifest prooxidant properties.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Dec 28, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off