Effect of soil pH and organic matter on the adsorption and desorption of pentachlorophenol

Effect of soil pH and organic matter on the adsorption and desorption of pentachlorophenol Various properties of soil affect the partition of organic contaminants within, and conversely, the properties of the organic contaminants also directly affect their partition behavior in soil. Therefore, understanding the effects of various properties of soil on the partition of organic contaminants favors subsequent assessment and provides soil remediation methods for policymakers. This study selected pentachlorophenol (PCP), a common hydrophobic ionizable organic compound in contaminated sites worldwide, as the target contaminant. The effects of pH, organic matter, and the combination of both, on PCP adsorption/desorption behavior in soil were investigated. Phosphoric acid and potassium hydroxide were used as buffer solutions to modify the soil pH by the batch and column extraction methods. A common retail organic fertilizer and fulvic acid were selected as additives to manipulate the soil organic content. Modifying the pH of the soil samples revealed that acidic soil exhibited a greater PCP adsorption rate than alkaline soil. The amount of PCP desorption increased regardless of pH of the in situ contaminated soil. The adsorption of PCP increased with increasing amount of organic additive. However, addition of fulvic acid yielded different results compared to the addition of organic fertilizer. Specifically, the organic fertilizer could not compete with the in situ contaminated soil in PCP adsorption, whereas fulvic acids increased the PCP dissolution to facilitate adsorbing contaminant adsorption. The combined effect of pH modification and organic matter addition provides additional PCP adsorption sites; therefore, adding the organic fertilizer to decrease the soil pH elevated the PCP adsorption rates of the laterite, alluvial, and in situ contaminated soil samples. The study results revealed that both pH and organic matter content are crucial to PCP adsorption/desorption in soil. Therefore, the effects of soil pH and organic matter should be considered in facilitating PCP treatment for soil remediation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Effect of soil pH and organic matter on the adsorption and desorption of pentachlorophenol

Loading next page...
 
/lp/springer_journal/effect-of-soil-ph-and-organic-matter-on-the-adsorption-and-desorption-RNcD2M0sQv
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9822-7
Publisher site
See Article on Publisher Site

Abstract

Various properties of soil affect the partition of organic contaminants within, and conversely, the properties of the organic contaminants also directly affect their partition behavior in soil. Therefore, understanding the effects of various properties of soil on the partition of organic contaminants favors subsequent assessment and provides soil remediation methods for policymakers. This study selected pentachlorophenol (PCP), a common hydrophobic ionizable organic compound in contaminated sites worldwide, as the target contaminant. The effects of pH, organic matter, and the combination of both, on PCP adsorption/desorption behavior in soil were investigated. Phosphoric acid and potassium hydroxide were used as buffer solutions to modify the soil pH by the batch and column extraction methods. A common retail organic fertilizer and fulvic acid were selected as additives to manipulate the soil organic content. Modifying the pH of the soil samples revealed that acidic soil exhibited a greater PCP adsorption rate than alkaline soil. The amount of PCP desorption increased regardless of pH of the in situ contaminated soil. The adsorption of PCP increased with increasing amount of organic additive. However, addition of fulvic acid yielded different results compared to the addition of organic fertilizer. Specifically, the organic fertilizer could not compete with the in situ contaminated soil in PCP adsorption, whereas fulvic acids increased the PCP dissolution to facilitate adsorbing contaminant adsorption. The combined effect of pH modification and organic matter addition provides additional PCP adsorption sites; therefore, adding the organic fertilizer to decrease the soil pH elevated the PCP adsorption rates of the laterite, alluvial, and in situ contaminated soil samples. The study results revealed that both pH and organic matter content are crucial to PCP adsorption/desorption in soil. Therefore, the effects of soil pH and organic matter should be considered in facilitating PCP treatment for soil remediation.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Aug 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off