Effect of slotted exit orifice on performance of plasma synthetic jet actuator

Effect of slotted exit orifice on performance of plasma synthetic jet actuator This study experimentally investigates the influence of exit orifice shape on the performance characteristics of a three-electrode plasma synthetic jet actuator. High-speed Schlieren imaging system and phase-locked two-component PIV measurements are used for flowfield characterisation in quiescent conditions. Two actuator configurations with the same exit area but different exit orifice shape (round orifice and slot orifice) are studied. Results indicate a close correspondence between the shapes of the starting vortex ring with the shapes of the respective exit orifices. For the slot orifice, the elongated starting vortex ring gradually expands during propagation, while its ends become warped. A distinct K–H instability structure is observed, inducing continuous oscillation of the high-speed jet. Compared with the jet from the round orifice, the slot jet has a higher entrainment rate of surrounding air, thus resulting in a lower propagation velocity of the jet front. The exit velocity of PSJA within one period initially shows a rapid increase, then persists at a relatively high level (100–130 m/s), and finally drops with some small-scale oscillations. The oscillation amplitude is less than 10 m/s, and the oscillation period is approximately 600 µs. Under conditions of same exit area, orifice shape has little influence on the variation of the exit velocity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Effect of slotted exit orifice on performance of plasma synthetic jet actuator

Loading next page...
 
/lp/springer_journal/effect-of-slotted-exit-orifice-on-performance-of-plasma-synthetic-jet-6h8TPb8at6
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2299-1
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial