Effect of silencing of the apoplastic invertase gene on photosynthesis in tomato

Effect of silencing of the apoplastic invertase gene on photosynthesis in tomato Photosynthesis was examined in wild-type tomato plants (Lycopersicon esculentum L., cv. Moneymaker) and in the transformants where gene expression of the leaf apoplastic invertase was suppressed by RNA interference (Lin8-RNAi). The influence of genetic transformation on photosynthesis depended on the demand for assimilates by sink organs. Using growth pots with low amount of soil, we found that at the initial growth stage when growth processes were particularly active, photosynthesis in Lin8-RNAi plants was higher than in the wild-type plants. As the reserves of mineral nutrients were gradually exhausted, photosynthesis decreased in both plant groups, but the decrease was more extensive in Lin8-RNAi plant form. Analysis of the distribution of 14C among the photosynthates produced after 3-min period of 14CO2 assimilation revealed the decreased incorporation of 14C into hexoses in Lin8-RNAi plants and the increased incorporation of 14C into aspartate and products of the glycolate pathway. Supplementing the soil with nitrate nitrogen as a fertilizer enhanced the non-carbohydrate trend of photosynthesis, but this trend was less pronounced in the transformed plants. Simultaneous measurements of CO2-exchange and H2O release revealed an insignificant increase in Lin8-RNAi plants of photosynthetic activity, transpiration, and intraleaf CO2 concentration. However, in 30–50 min after lowering the photon flux density from 1556 to 771 μmol/(m2 s) photosynthesis was reduced in both genotypes, whereas transpiration was diminished in wild-type plants and increased in the Lin8-RNAi form. It is concluded that the apoplastic invertase regulates photosynthesis through changes in osmolarity of the apoplastic fluid that controls the opening of stomata. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of silencing of the apoplastic invertase gene on photosynthesis in tomato

Loading next page...
 
/lp/springer_journal/effect-of-silencing-of-the-apoplastic-invertase-gene-on-photosynthesis-3SpfXS0jng
Publisher
Pleiades Publishing
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443715010045
Publisher site
See Article on Publisher Site

Abstract

Photosynthesis was examined in wild-type tomato plants (Lycopersicon esculentum L., cv. Moneymaker) and in the transformants where gene expression of the leaf apoplastic invertase was suppressed by RNA interference (Lin8-RNAi). The influence of genetic transformation on photosynthesis depended on the demand for assimilates by sink organs. Using growth pots with low amount of soil, we found that at the initial growth stage when growth processes were particularly active, photosynthesis in Lin8-RNAi plants was higher than in the wild-type plants. As the reserves of mineral nutrients were gradually exhausted, photosynthesis decreased in both plant groups, but the decrease was more extensive in Lin8-RNAi plant form. Analysis of the distribution of 14C among the photosynthates produced after 3-min period of 14CO2 assimilation revealed the decreased incorporation of 14C into hexoses in Lin8-RNAi plants and the increased incorporation of 14C into aspartate and products of the glycolate pathway. Supplementing the soil with nitrate nitrogen as a fertilizer enhanced the non-carbohydrate trend of photosynthesis, but this trend was less pronounced in the transformed plants. Simultaneous measurements of CO2-exchange and H2O release revealed an insignificant increase in Lin8-RNAi plants of photosynthetic activity, transpiration, and intraleaf CO2 concentration. However, in 30–50 min after lowering the photon flux density from 1556 to 771 μmol/(m2 s) photosynthesis was reduced in both genotypes, whereas transpiration was diminished in wild-type plants and increased in the Lin8-RNAi form. It is concluded that the apoplastic invertase regulates photosynthesis through changes in osmolarity of the apoplastic fluid that controls the opening of stomata.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jan 4, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off