Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress

Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development... Effects of two selenium concentrations—0.4 and 0.8 mg Se6+ per kilogram of soil (treatments Se0.4 and Se0.8)—on seedling growth, chlorophyll content (Chl (a + b)), the content of thiobarbituric acidreactive substances (TBARs) indicative of peroxidation rates, and the activities of antioxidant enzymes (ascorbate peroxidase, AsP; glutathione reductase, GR; and guaiacol peroxidase, GPX) were studied in roots and leaves of wheat (Triticum aestivum L., cv. Triso) plants that were exposed for 14 days to oxidative stress induced by 50 and 100 mg Pb2+ per kilogram of soil (treatments Pb50 and Pb100, respectively). The pollution of soil with Pb2+ inhibited growth, lowered Chl (a + b) content, and intensified peroxidation. The content of TBARs increased by 44 and 72% in leaves and by 25 and 45% in roots for treatments Pb50 and Pb100, respectively. Activities of the antioxidant enzymes GR and GPX were higher in Pb2+-treated than in untreated (control) plants. The introduction of Se6+ into Pb2+-free soil (treatment Se0.4) was found to promote growth, stimulate AsP activity by 40% in leaves, and enhance AsP, GR, and GPX activities in roots by 38, 33, and 74%, respectively. The content of TBARs was reduced in Se6+-treated plants. By contrast, the treatment Se0.8 suppressed growth, elevated TBARs content, and stimulated activities of antioxidant enzymes in roots and leaves. The addition of 0.4 mg Se6+/kg to Pb2+-contaminated soil alleviated the negative influence of lead on plant growth, whereas the addition of 0.8 mg Se6+/kg aggravated the effect of Pb2+ contamination, especially in treatment (Pb100+Se0.8). Thus, the effectiveness of exogenous Se6+ application on growth and adaptive potential of plants cultivated under optimal pollutant-free conditions and on soils contaminated with lead depended on the concentration of Se6+ supplemented to soil and on the content of the stressor agent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress

Loading next page...
 
/lp/springer_journal/effect-of-selenium-on-growth-and-antioxidant-capacity-of-triticum-uPzM8Y204S
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443717010022
Publisher site
See Article on Publisher Site

Abstract

Effects of two selenium concentrations—0.4 and 0.8 mg Se6+ per kilogram of soil (treatments Se0.4 and Se0.8)—on seedling growth, chlorophyll content (Chl (a + b)), the content of thiobarbituric acidreactive substances (TBARs) indicative of peroxidation rates, and the activities of antioxidant enzymes (ascorbate peroxidase, AsP; glutathione reductase, GR; and guaiacol peroxidase, GPX) were studied in roots and leaves of wheat (Triticum aestivum L., cv. Triso) plants that were exposed for 14 days to oxidative stress induced by 50 and 100 mg Pb2+ per kilogram of soil (treatments Pb50 and Pb100, respectively). The pollution of soil with Pb2+ inhibited growth, lowered Chl (a + b) content, and intensified peroxidation. The content of TBARs increased by 44 and 72% in leaves and by 25 and 45% in roots for treatments Pb50 and Pb100, respectively. Activities of the antioxidant enzymes GR and GPX were higher in Pb2+-treated than in untreated (control) plants. The introduction of Se6+ into Pb2+-free soil (treatment Se0.4) was found to promote growth, stimulate AsP activity by 40% in leaves, and enhance AsP, GR, and GPX activities in roots by 38, 33, and 74%, respectively. The content of TBARs was reduced in Se6+-treated plants. By contrast, the treatment Se0.8 suppressed growth, elevated TBARs content, and stimulated activities of antioxidant enzymes in roots and leaves. The addition of 0.4 mg Se6+/kg to Pb2+-contaminated soil alleviated the negative influence of lead on plant growth, whereas the addition of 0.8 mg Se6+/kg aggravated the effect of Pb2+ contamination, especially in treatment (Pb100+Se0.8). Thus, the effectiveness of exogenous Se6+ application on growth and adaptive potential of plants cultivated under optimal pollutant-free conditions and on soils contaminated with lead depended on the concentration of Se6+ supplemented to soil and on the content of the stressor agent.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off