Effect of seaweed Kappaphycus alvarezii in the synthesis of Cu@Cu2O core–shell nanoparticles prepared by chemical reduction method

Effect of seaweed Kappaphycus alvarezii in the synthesis of Cu@Cu2O core–shell nanoparticles... This study aims is to investigate the influence of different concentrations of Kappaphycus alvarezii (K. alvarezii) for the synthesis of Cu@Cu2O core–shell nanoparticles (NPs) in aqueous solution. The core–shell NPs were prepared by a chemical reduction method using K. alvarezii, CuSO4·5H2O, NaOH, ascorbic acid, hydrazinium hydroxide, as stabilizer, copper precursor, pH moderator, antioxidant and reducing agent under 120 °C temperature, respectively. Formation of Cu@Cu2O-NPs was determined by UV–Vis spectroscopy where surface plasmon absorption maxima can be observed at 390-590 nm. The synthesized core–shell NPs were also characterized by X-ray diffraction. Moreover, the morphology and structure of the K. alvarezii/Cu@Cu2O-NPs were investigated by TEM, FESEM and EDXRF. The Fourier transform infrared spectrum suggested the complexation present between K. alvarezii and Cu@Cu2O-NPs. The study clearly showed that using various amounts of K. alvarezii leads to produce different ratios and sizes of Cu@Cu2O NPs. The size of the Cu@Cu2O-NPs decreased as the amount of K. alvarezii was increased. The ratio of Cu@Cu2O increases with the increasing concentration of K. alvarezii until 0.2 wt%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Effect of seaweed Kappaphycus alvarezii in the synthesis of Cu@Cu2O core–shell nanoparticles prepared by chemical reduction method

Loading next page...
 
/lp/springer_journal/effect-of-seaweed-kappaphycus-alvarezii-in-the-synthesis-of-cu-cu2o-FXGW80mr0S
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-014-1817-0
Publisher site
See Article on Publisher Site

Abstract

This study aims is to investigate the influence of different concentrations of Kappaphycus alvarezii (K. alvarezii) for the synthesis of Cu@Cu2O core–shell nanoparticles (NPs) in aqueous solution. The core–shell NPs were prepared by a chemical reduction method using K. alvarezii, CuSO4·5H2O, NaOH, ascorbic acid, hydrazinium hydroxide, as stabilizer, copper precursor, pH moderator, antioxidant and reducing agent under 120 °C temperature, respectively. Formation of Cu@Cu2O-NPs was determined by UV–Vis spectroscopy where surface plasmon absorption maxima can be observed at 390-590 nm. The synthesized core–shell NPs were also characterized by X-ray diffraction. Moreover, the morphology and structure of the K. alvarezii/Cu@Cu2O-NPs were investigated by TEM, FESEM and EDXRF. The Fourier transform infrared spectrum suggested the complexation present between K. alvarezii and Cu@Cu2O-NPs. The study clearly showed that using various amounts of K. alvarezii leads to produce different ratios and sizes of Cu@Cu2O NPs. The size of the Cu@Cu2O-NPs decreased as the amount of K. alvarezii was increased. The ratio of Cu@Cu2O increases with the increasing concentration of K. alvarezii until 0.2 wt%.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 8, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off