Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured... Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6–9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2–4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°–45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Rock Mechanics and Rock Engineering Springer Journals

Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

Loading next page...
 
/lp/springer_journal/effect-of-random-natural-fractures-on-hydraulic-fracture-propagation-0N0V5VgaR2
Publisher
Springer Vienna
Copyright
Copyright © 2017 by Springer-Verlag GmbH Austria
Subject
Earth Sciences; Geophysics/Geodesy; Civil Engineering
ISSN
0723-2632
eISSN
1434-453X
D.O.I.
10.1007/s00603-017-1331-y
Publisher site
See Article on Publisher Site

Abstract

Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6–9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2–4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°–45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

Journal

Rock Mechanics and Rock EngineeringSpringer Journals

Published: Oct 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off