Effect of pristine and functionalized single- and multi-walled carbon nanotubes on CO2 separation of mixed matrix membranes based on polymers of intrinsic microporosity (PIM-1): a molecular dynamics simulation study

Effect of pristine and functionalized single- and multi-walled carbon nanotubes on CO2 separation... Molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations were conducted to investigate the transport properties of carbon dioxide, methane, nitrogen, and oxygen through pure and mixed matrix membranes (MMMs) based on polymers of intrinsic microporosity (PIM-1). For this purpose, first, 0.5 to 3 wt% of pristine single-walled carbon nanotube (p-SWCNT) and multi-walled carbon nanotube (p-MWCNT) were embedded into the pure PIM-1, and then for better dispersion of CNT particles into the polymer matrix and to improve the performance of the resulting MMMs, polyethylene glycol (PEG) functionalized SWCNT and MWCNT (f-SWCNT and f-MWCNT, respectively) were loaded. The characterization of the obtained MMMs was carried out by using density, glass transition temperature, X-ray pattern, and fractional free volume calculations. Comparing the obtained results with the available reported experimental data, indicate the authenticity of the applied simulation approach. The simulation results exhibit that the pristine and PEG-functionalized CNT particles improve the transport properties such as diffusivity, solubility, and permeability of the PIM-1 membranes, without sacrificing their selectivity. Also, the MMMs incorporated with 2 wt% of the functionalized CNT particles indicate better performance for the CO2 separation from other gases. According to the calculated results, the highest permeability and diffusivity for CO2 are observed in the [PIM-1/f-SWCNT] MMM among the other membranes which represent that the loading of the f-SWCNTs can enhance the CO2 separation performance of PIM-1 more than other CNTs studied in this work. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Modeling Springer Journals

Effect of pristine and functionalized single- and multi-walled carbon nanotubes on CO2 separation of mixed matrix membranes based on polymers of intrinsic microporosity (PIM-1): a molecular dynamics simulation study

Loading next page...
 
/lp/springer_journal/effect-of-pristine-and-functionalized-single-and-multi-walled-carbon-GBk9ykG0UD
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Chemistry; Computer Applications in Chemistry; Molecular Medicine; Computer Appl. in Life Sciences; Characterization and Evaluation of Materials; Theoretical and Computational Chemistry
ISSN
1610-2940
eISSN
0948-5023
D.O.I.
10.1007/s00894-017-3436-3
Publisher site
See Article on Publisher Site

Abstract

Molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations were conducted to investigate the transport properties of carbon dioxide, methane, nitrogen, and oxygen through pure and mixed matrix membranes (MMMs) based on polymers of intrinsic microporosity (PIM-1). For this purpose, first, 0.5 to 3 wt% of pristine single-walled carbon nanotube (p-SWCNT) and multi-walled carbon nanotube (p-MWCNT) were embedded into the pure PIM-1, and then for better dispersion of CNT particles into the polymer matrix and to improve the performance of the resulting MMMs, polyethylene glycol (PEG) functionalized SWCNT and MWCNT (f-SWCNT and f-MWCNT, respectively) were loaded. The characterization of the obtained MMMs was carried out by using density, glass transition temperature, X-ray pattern, and fractional free volume calculations. Comparing the obtained results with the available reported experimental data, indicate the authenticity of the applied simulation approach. The simulation results exhibit that the pristine and PEG-functionalized CNT particles improve the transport properties such as diffusivity, solubility, and permeability of the PIM-1 membranes, without sacrificing their selectivity. Also, the MMMs incorporated with 2 wt% of the functionalized CNT particles indicate better performance for the CO2 separation from other gases. According to the calculated results, the highest permeability and diffusivity for CO2 are observed in the [PIM-1/f-SWCNT] MMM among the other membranes which represent that the loading of the f-SWCNTs can enhance the CO2 separation performance of PIM-1 more than other CNTs studied in this work.

Journal

Journal of Molecular ModelingSpringer Journals

Published: Aug 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off