Effect of potassium addition on bimetallic PtSn/θ-Al2O3 catalyst for dehydrogenation of propane to propylene

Effect of potassium addition on bimetallic PtSn/θ-Al2O3 catalyst for dehydrogenation of propane... PtSn/θ-Al2O3 catalysts with different amounts of K (0.14, 0.22, 0.49, 0.72, and 0.96 wt%) are prepared to investigate the K effects on the PtSn catalyst in propane dehydrogenation (PDH). KPtSn catalyst with 0.xx wt% K, 0.5 wt% Pt and 0.75 wt% Sn is designated as xx-KPtSn. PDH was performed at 873 K and a gas hourly space velocity (GHSV) of 53,000 mL/gcat h. The temperature-programmed desorption (NH3-TPD), temperature-programmed reduction (TPR) and CO chemisorption of the KPtSn catalysts with K added revealed the potassium addition blocked the acid sites, promoted the reduction of Sn oxide and decreased the Pt dispersion. The formations of cracking products and higher hydrocarbons on acid sites were suppressed by the K effect of blocking the acid sites. In contrast, K addition at more than 0.72 wt% rather increased cracking products and the amount of coke, resulting in the severe deactivation of catalysts. The high cracking products on the KPtSn catalysts with the high amount of K should not be related to the acid sites, because the acid sites were monotonously decreased with an increase in the amount of K. Instead, the potassium affected the characteristics of PtSn. The interaction between Pt and Sn could be weakened by enriching the reduced Sn, because the K component promoted the reduction of Sn oxide in the TPR experiments. Therefore, the 14-KPtSn catalyst with the low amount of K exhibits the highest stability and selectivity among the prepared KPtSn catalysts due to the compromise of the advantageous (blocking the acid sites) and bad (weakening the interaction between Pt and Sn) effects of the K addition in PDH. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Effect of potassium addition on bimetallic PtSn/θ-Al2O3 catalyst for dehydrogenation of propane to propylene

Loading next page...
Springer Netherlands
Copyright © 2015 by Springer Science+Business Media Dordrecht
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial