Effect of pollination on accumulation of ACC synthase and ACC oxidase transcripts, ethylene production and flower petal abscission in geranium (Pelargonium × hortorum L.H. Bailey)

Effect of pollination on accumulation of ACC synthase and ACC oxidase transcripts, ethylene... Self-pollination of diploid zonal geranium (Pelargonium × hortorum L.H. Bailey) florets leads to a dramatic rise in ethylene production, followed by abscission within 4 h. Neither wounding of the stigma, pollination with tetraploid pollen, nor heat-killed self pollen could elicit as much ethylene production and petal abscission as self-pollination. A cDNA sharing sequence identity with ACC synthase (GACS2) and three different cDNAs sharing sequence identity with ACC oxidase (GACO1, GACO2, GACO3) were isolated from geranium pistils. Transcripts hybridizing with these probes increased slightly in response to self-pollination, but the degree of accumulation in response to various treatments did not correlate with ethylene production. When calculated on a per-plant-part basis, transcripts hybridizing with GACS2 were equally distributed among the stigma+style, sterile ovary, and ovary tissues, but transcripts hybridizing with the three ACC oxidase clones were differentially distributed. All transcripts were differentially expressed among the other tissues of the plant, with GACO1 being the most widely distributed. Ethylene production in geranium pistils was not autocatalytic. Propylene failed to induce ethylene production and ethylene did not induce the accumulation of ACC synthase or ACC oxidase transcripts. ACC accumulated in the stigma and style, and to a smaller extent in the sterile ovary, after pollination. These data support a model of pollination-induced ethylene production by post-transcriptional regulation of ethylene biosynthetic gene expression. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Effect of pollination on accumulation of ACC synthase and ACC oxidase transcripts, ethylene production and flower petal abscission in geranium (Pelargonium × hortorum L.H. Bailey)

Loading next page...
 
/lp/springer_journal/effect-of-pollination-on-accumulation-of-acc-synthase-and-acc-oxidase-QFB0BSC9MX
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005877809905
Publisher site
See Article on Publisher Site

Abstract

Self-pollination of diploid zonal geranium (Pelargonium × hortorum L.H. Bailey) florets leads to a dramatic rise in ethylene production, followed by abscission within 4 h. Neither wounding of the stigma, pollination with tetraploid pollen, nor heat-killed self pollen could elicit as much ethylene production and petal abscission as self-pollination. A cDNA sharing sequence identity with ACC synthase (GACS2) and three different cDNAs sharing sequence identity with ACC oxidase (GACO1, GACO2, GACO3) were isolated from geranium pistils. Transcripts hybridizing with these probes increased slightly in response to self-pollination, but the degree of accumulation in response to various treatments did not correlate with ethylene production. When calculated on a per-plant-part basis, transcripts hybridizing with GACS2 were equally distributed among the stigma+style, sterile ovary, and ovary tissues, but transcripts hybridizing with the three ACC oxidase clones were differentially distributed. All transcripts were differentially expressed among the other tissues of the plant, with GACO1 being the most widely distributed. Ethylene production in geranium pistils was not autocatalytic. Propylene failed to induce ethylene production and ethylene did not induce the accumulation of ACC synthase or ACC oxidase transcripts. ACC accumulated in the stigma and style, and to a smaller extent in the sterile ovary, after pollination. These data support a model of pollination-induced ethylene production by post-transcriptional regulation of ethylene biosynthetic gene expression.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off