Effect of pollination and exogenous ethylene on accumulation of ETR1 homologue transcripts during flower petal abscission in geranium (Pelargonium × hortorum L.H. Bailey)

Effect of pollination and exogenous ethylene on accumulation of ETR1 homologue transcripts during... We have isolated two cDNAs from geranium, PhETR1 and PhETR2. The deduced amino acid sequences of PhETR1 and PhETR2 share 78% and 79% identity with ETR1 from Arabidopsis thaliana respectively. These genes are members of a multigene family and are expressed at moderate levels in leaves, pedicels, sepals, pistils and petals, and at very low levels in roots. PhETR1 and PhETR2 mRNAs are expressed in geranium florets long before they are receptive to pollination and transcript levels remain constant throughout floral development. Message levels of PhETR1 and PhETR2 in pistils and receptacles are unaffected by self-pollination or treatment with 1 μ/l ethylene that induces petal abscission. Our results indicate that the amount of PhETR1 and PHETR2 mRNA is not indicative of the level of sensitivity of geranium florets to ethylene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Effect of pollination and exogenous ethylene on accumulation of ETR1 homologue transcripts during flower petal abscission in geranium (Pelargonium × hortorum L.H. Bailey)

Loading next page...
 
/lp/springer_journal/effect-of-pollination-and-exogenous-ethylene-on-accumulation-of-etr1-2gHFXjocZx
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006409827860
Publisher site
See Article on Publisher Site

Abstract

We have isolated two cDNAs from geranium, PhETR1 and PhETR2. The deduced amino acid sequences of PhETR1 and PhETR2 share 78% and 79% identity with ETR1 from Arabidopsis thaliana respectively. These genes are members of a multigene family and are expressed at moderate levels in leaves, pedicels, sepals, pistils and petals, and at very low levels in roots. PhETR1 and PhETR2 mRNAs are expressed in geranium florets long before they are receptive to pollination and transcript levels remain constant throughout floral development. Message levels of PhETR1 and PhETR2 in pistils and receptacles are unaffected by self-pollination or treatment with 1 μ/l ethylene that induces petal abscission. Our results indicate that the amount of PhETR1 and PHETR2 mRNA is not indicative of the level of sensitivity of geranium florets to ethylene.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off