Effect of Pilot Contamination Over Diversity Gain in Multi-cell MU-MIMO Systems

Effect of Pilot Contamination Over Diversity Gain in Multi-cell MU-MIMO Systems In this paper, we investigate the diversity performance of multi-cell multi-user multiple-input multiple-output wireless system with linear minimum mean-squared error receiver. We consider imperfect channel state information at the receiver, and in particular we focus on the effect of pilot contamination. With the equivalent channel model, we study the outage probability of the uplink transmission, and mathematically analyze the diversity performance. We successfully derive the closed-form expression of the outage probability in finite signal to noise ratio (SNR) regime, and then the optimal pilot-to-data power ratio is studied. It is proved that due to pilot contamination, diversity gain approaches to zero with the SNR growing to positive infinite. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Effect of Pilot Contamination Over Diversity Gain in Multi-cell MU-MIMO Systems

Loading next page...
 
/lp/springer_journal/effect-of-pilot-contamination-over-diversity-gain-in-multi-cell-mu-RweC1kYYd3
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4125-3
Publisher site
See Article on Publisher Site

Abstract

In this paper, we investigate the diversity performance of multi-cell multi-user multiple-input multiple-output wireless system with linear minimum mean-squared error receiver. We consider imperfect channel state information at the receiver, and in particular we focus on the effect of pilot contamination. With the equivalent channel model, we study the outage probability of the uplink transmission, and mathematically analyze the diversity performance. We successfully derive the closed-form expression of the outage probability in finite signal to noise ratio (SNR) regime, and then the optimal pilot-to-data power ratio is studied. It is proved that due to pilot contamination, diversity gain approaches to zero with the SNR growing to positive infinite.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Apr 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off