Effect of photosynthetically active radiation, salinization, and type of nitrogen nutrition on growth of Salicornia europaea plants

Effect of photosynthetically active radiation, salinization, and type of nitrogen nutrition on... Effects of various combinations of nutrient solution salinity (0.3, 171, and 342 mM NaCl), photosynthetically active radiation (PAR) of 600 or 1150 μmol/(m2 s), and type of nitrogen nutrition (amide-N or nitrate-N) on the productivity and the content of accumulated mineral nutrients and free amino acids were studied in Salicornia europaea plants. At PAR of 600 μmol/(m2 s), plant productivity increased with elevation of salinity level; at 1150 μmol/(m2 s), the maximum productivity was observed in the plants grown at 171 mM of NaCl. The content of free amino acids in shoots, regardless of PAR, decreased with growing salinity level, whereas Na content, on the opposite, increased. Glutamic acid, rather than proline, was shown to be the main organic osmolyte in this plant species. Comparison of the productivity of plants grown on solutions with amide (urea) or nitrate nitrogen showed that higher biomass accumulation was achieved in the former case. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of photosynthetically active radiation, salinization, and type of nitrogen nutrition on growth of Salicornia europaea plants

Loading next page...
 
/lp/springer_journal/effect-of-photosynthetically-active-radiation-salinization-and-type-of-eB8gN4L3al
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443706060094
Publisher site
See Article on Publisher Site

Abstract

Effects of various combinations of nutrient solution salinity (0.3, 171, and 342 mM NaCl), photosynthetically active radiation (PAR) of 600 or 1150 μmol/(m2 s), and type of nitrogen nutrition (amide-N or nitrate-N) on the productivity and the content of accumulated mineral nutrients and free amino acids were studied in Salicornia europaea plants. At PAR of 600 μmol/(m2 s), plant productivity increased with elevation of salinity level; at 1150 μmol/(m2 s), the maximum productivity was observed in the plants grown at 171 mM of NaCl. The content of free amino acids in shoots, regardless of PAR, decreased with growing salinity level, whereas Na content, on the opposite, increased. Glutamic acid, rather than proline, was shown to be the main organic osmolyte in this plant species. Comparison of the productivity of plants grown on solutions with amide (urea) or nitrate nitrogen showed that higher biomass accumulation was achieved in the former case.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 26, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off