Effect of Periodic Heat Shock on the Inner Membrane System of Etioplasts

Effect of Periodic Heat Shock on the Inner Membrane System of Etioplasts Etiolated barley (Hordeum vulgare L.) seedlings were treated with heat shock (HS). The heat treatment was conducted daily for 1 h at 40°C over 6 days and led to shortening of leaves and coleoptiles, an increase in the etioplast volume and prothylakoid length, and to a decrease in the size of paracrystalline prolamellar bodies (PLB). As a result of HS treatment, stimulation of carotenoid and protochlorophyllide (Pchlide) synthesis as well as an increase in the relative content of the Pchlide short-wavelength form (Pchlide630) were observed in the leaf tissue of seven-day-old seedlings 12 h after the last HS treatment. HS had no effect on the overall amount of Pchlide-oxidoreductase (POR) in leaves and PLB membranes and did not suppress the Pchlide photoreduction in vivo. PLB membranes, isolated from the HS-treated seedlings, possessed a higher Pchlide and carotenoid content as calculated on total protein basis. These membranes showed more intense protein fluorescence than PLB from untreated plants, whereas hydrophobicity of the microenvironment of the fluorescent amino-acid residues remained unchanged. Studies using pyrene (lipophilic fluorescent probe emitted in Pchlide and carotenoid absorption bands) showed that HS increases the fluidity of membrane lipids in PLB membranes and that the pigments accumulated in these membranes are located in the region of lipid–protein contact site. The results are discussed in relation to the adaptive role of protein–protein and pigment–protein–lipid interactions in etioplast membranes under stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of Periodic Heat Shock on the Inner Membrane System of Etioplasts

Loading next page...
 
/lp/springer_journal/effect-of-periodic-heat-shock-on-the-inner-membrane-system-of-15HW4yVlyX
Publisher
Springer Journals
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1015592902659
Publisher site
See Article on Publisher Site

Abstract

Etiolated barley (Hordeum vulgare L.) seedlings were treated with heat shock (HS). The heat treatment was conducted daily for 1 h at 40°C over 6 days and led to shortening of leaves and coleoptiles, an increase in the etioplast volume and prothylakoid length, and to a decrease in the size of paracrystalline prolamellar bodies (PLB). As a result of HS treatment, stimulation of carotenoid and protochlorophyllide (Pchlide) synthesis as well as an increase in the relative content of the Pchlide short-wavelength form (Pchlide630) were observed in the leaf tissue of seven-day-old seedlings 12 h after the last HS treatment. HS had no effect on the overall amount of Pchlide-oxidoreductase (POR) in leaves and PLB membranes and did not suppress the Pchlide photoreduction in vivo. PLB membranes, isolated from the HS-treated seedlings, possessed a higher Pchlide and carotenoid content as calculated on total protein basis. These membranes showed more intense protein fluorescence than PLB from untreated plants, whereas hydrophobicity of the microenvironment of the fluorescent amino-acid residues remained unchanged. Studies using pyrene (lipophilic fluorescent probe emitted in Pchlide and carotenoid absorption bands) showed that HS increases the fluidity of membrane lipids in PLB membranes and that the pigments accumulated in these membranes are located in the region of lipid–protein contact site. The results are discussed in relation to the adaptive role of protein–protein and pigment–protein–lipid interactions in etioplast membranes under stress.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off