Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effect of particle number density in in-line digital holographic particle velocimetry

Effect of particle number density in in-line digital holographic particle velocimetry A digital in-line holographic particle tracking velocimetry (HPTV) system was developed to measure 3D (three-dimensional) velocity fields of turbulent flows. The digital HPTV (DHPTV) procedure consists of four steps: recording, numerical reconstruction, particle extraction and velocity extraction. In the recording step, a digital CCD camera was used as a recording device. Holograms contained many unwanted images or noise. To get clean holograms, digital image processing techniques were adopted. In the velocity extraction routine, we improved the HPTV algorithm to extract 3D displacement information of tracer particles. In general, the results obtained using HPTV were not fully acceptable due to technical limitations such as low spatial resolution, small volume size, and low numerical aperture (NA). The problems of spatial resolution and NA are closely related with a recording device. As one experimental parameter that can be optimized, we focused on the particle number density. Variation of the reconstruction efficiency and recovery ratio were compared quantitatively with varying particle number density to check performance of the developed in-line DHPTV system. The reconstruction efficiency represented the particle number distribution acquired through the numerical reconstruction procedure. In addition the recovery ratio showed the performance of 3D PTV algorithm employed for DHPTV measurements. The particle number density in the range of C o = 13–17 particles/mm3 was found to be optimum for the DHPTV system tested in this study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Effect of particle number density in in-line digital holographic particle velocimetry

Experiments in Fluids , Volume 44 (4) – Nov 8, 2007

Loading next page...
 
/lp/springer_journal/effect-of-particle-number-density-in-in-line-digital-holographic-jWHUQmJSFT

References (19)

Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
DOI
10.1007/s00348-007-0422-z
Publisher site
See Article on Publisher Site

Abstract

A digital in-line holographic particle tracking velocimetry (HPTV) system was developed to measure 3D (three-dimensional) velocity fields of turbulent flows. The digital HPTV (DHPTV) procedure consists of four steps: recording, numerical reconstruction, particle extraction and velocity extraction. In the recording step, a digital CCD camera was used as a recording device. Holograms contained many unwanted images or noise. To get clean holograms, digital image processing techniques were adopted. In the velocity extraction routine, we improved the HPTV algorithm to extract 3D displacement information of tracer particles. In general, the results obtained using HPTV were not fully acceptable due to technical limitations such as low spatial resolution, small volume size, and low numerical aperture (NA). The problems of spatial resolution and NA are closely related with a recording device. As one experimental parameter that can be optimized, we focused on the particle number density. Variation of the reconstruction efficiency and recovery ratio were compared quantitatively with varying particle number density to check performance of the developed in-line DHPTV system. The reconstruction efficiency represented the particle number distribution acquired through the numerical reconstruction procedure. In addition the recovery ratio showed the performance of 3D PTV algorithm employed for DHPTV measurements. The particle number density in the range of C o = 13–17 particles/mm3 was found to be optimum for the DHPTV system tested in this study.

Journal

Experiments in FluidsSpringer Journals

Published: Nov 8, 2007

There are no references for this article.