Effect of nitrates supplied with the transpiration flow on assimilate translocation

Effect of nitrates supplied with the transpiration flow on assimilate translocation Solutions of nitrates (0.5% KNO3, 0.2% NH4NO3) or urea (0.15%) were fed under the pressure of 104 Pa to 50–60-cm-long detached shoots of common flax (Linum usitatissimum L.). One hour after the start of supplying the solutions, an assimilation clip chamber was fastened to the middle part of the shoot (14C source area), and 14CO2 was blown through in the light for 2.5 min. The analysis of distribution of 14C among the labeled products of photosynthesis produced by source leaves showed that nitrates reduced the incorporation of the label into sucrose. At the same time, the ratio of labeled sucrose to labeled hexoses decreased, and the incorporation of the label into serine greatly increased. Urea did not produce such effects. The pattern of distribution of 14C within the plant 3 h after the assimilation of 14CO2 points to the suppression of assimilate efflux from the leaves of plants fed with nitrates. In plants supplied with water or urea, 17–20% of labeled carbon was found below the 14C source area of the shoot, in nitrate type of treatment, only 3–5% was found there. In plants supplied with nitrates, the cortex tissue below the source leaf contained more 14C in proteins and less in low-molecular substances. In the wood tissue, such a correlation was not observed. When the shoot was supplied with water or urea, the content of 14C in sucrose in the source leaves in 3 h declined from 55–60% to 38–42%. When the shoot was fed with nitrates, the share of label in sucrose increased from 50 to 62–73%. Autoradiography of the source leaves showed that, in plants supplied with water or urea, the label was predominantly accumulated in large vascular bundles, and in nitrate type of treatment, it was accumulated outside large bundles. Electron microscopy showed that, in nitrate plants, the companion cells of phloem endings were very much vacuolated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of nitrates supplied with the transpiration flow on assimilate translocation

Loading next page...
Copyright © 2007 by Pleiades Publishing, Ltd.
Life Sciences; Plant Physiology; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial