Effect of Multi-wall System Composition on Survivability for Spacecraft Impacted by Orbital Debris

Effect of Multi-wall System Composition on Survivability for Spacecraft Impacted by Orbital Debris Long-duration spacecraft in low earth orbit such as the International Space Station (ISS) are highly susceptible to high-speed impacts by pieces of debris from past earth-orbiting missions. Among the hazards that accompany the penetration of a pressurized manned spacecraft are critical crack propagation in the module wall, crew hypoxia, and uncontrolled thrust due to air rushing out of the module wall hole. A Monte Carlo simulation tool was used to determine the effect of spacecraft wall construction on the survivability of ISS modules and crew following an orbital debris penetration. The simulation results indicate that enhanced shield wall designs (i.e., multi-wall systems with heavier inner bumpers) always lead to higher overall survivability of the station and crew due to an overwhelming decrease in likelihood of module penetration. The results of the simulations also indicate that changes in crew operations, equipment locations, and operation procedures can significantly reduce the likelihood of crew or station loss following an orbital debris penetration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Space Debris Springer Journals

Effect of Multi-wall System Composition on Survivability for Spacecraft Impacted by Orbital Debris

Loading next page...
 
/lp/springer_journal/effect-of-multi-wall-system-composition-on-survivability-for-rAWdUz66Yx
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Engineering; Automotive Engineering; Law of the Sea, Air and Outer Space; Astronomy, Observations and Techniques
ISSN
1388-3828
eISSN
1572-9664
D.O.I.
10.1023/A:1010032430083
Publisher site
See Article on Publisher Site

Abstract

Long-duration spacecraft in low earth orbit such as the International Space Station (ISS) are highly susceptible to high-speed impacts by pieces of debris from past earth-orbiting missions. Among the hazards that accompany the penetration of a pressurized manned spacecraft are critical crack propagation in the module wall, crew hypoxia, and uncontrolled thrust due to air rushing out of the module wall hole. A Monte Carlo simulation tool was used to determine the effect of spacecraft wall construction on the survivability of ISS modules and crew following an orbital debris penetration. The simulation results indicate that enhanced shield wall designs (i.e., multi-wall systems with heavier inner bumpers) always lead to higher overall survivability of the station and crew due to an overwhelming decrease in likelihood of module penetration. The results of the simulations also indicate that changes in crew operations, equipment locations, and operation procedures can significantly reduce the likelihood of crew or station loss following an orbital debris penetration.

Journal

Space DebrisSpringer Journals

Published: Sep 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off