Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effect of Mixed-Phospholipid Layer on Phospholipase D Reaction-induced Vesicle Rupture

Effect of Mixed-Phospholipid Layer on Phospholipase D Reaction-induced Vesicle Rupture Spherical phospholipid bilayers, or vesicles, were prepared layer by layer using a double-emulsion technique, which allows the outer layer of the vesicles to be formed with two phospholipids that have different head groups: phosphatidylcholine (PC) and phosphatidylethanolamine. At the outer layer of the vesicles, the phospholipase D (PLD) catalyzed for the conversion of PC to phosphatidic acid. The reaction caused by PLD induced the curvature change of the vesicles, which eventually led to the rupture of the vesicles. Before the investigation, the ratio of dioleoylphosphatidylethanolamine to oleoylhydroxyphosphatidylethanolamine was found as a condition such that the vesicles made with the mixed lipids were as stable as those made with pure dioleoylphosphatidylcholine. Response time from the PLD injection to vesicle rupture was monitored by the composition of the outer layer by the fluorescence intensity change of pH-sensitive dye encapsulated in the vesicles. The response time began to be slowed at approximately 30 % PC. The response times for the compositions were associated with the surface density of PC at the outer layer. These results also seem to be determined by the size of PLD, specifically the PLD active site. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Effect of Mixed-Phospholipid Layer on Phospholipase D Reaction-induced Vesicle Rupture

The Journal of Membrane Biology , Volume 245 (11) – May 25, 2012

Loading next page...
 
/lp/springer_journal/effect-of-mixed-phospholipid-layer-on-phospholipase-d-reaction-induced-MS4nlidSvy

References (36)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
DOI
10.1007/s00232-012-9438-2
pmid
22622287
Publisher site
See Article on Publisher Site

Abstract

Spherical phospholipid bilayers, or vesicles, were prepared layer by layer using a double-emulsion technique, which allows the outer layer of the vesicles to be formed with two phospholipids that have different head groups: phosphatidylcholine (PC) and phosphatidylethanolamine. At the outer layer of the vesicles, the phospholipase D (PLD) catalyzed for the conversion of PC to phosphatidic acid. The reaction caused by PLD induced the curvature change of the vesicles, which eventually led to the rupture of the vesicles. Before the investigation, the ratio of dioleoylphosphatidylethanolamine to oleoylhydroxyphosphatidylethanolamine was found as a condition such that the vesicles made with the mixed lipids were as stable as those made with pure dioleoylphosphatidylcholine. Response time from the PLD injection to vesicle rupture was monitored by the composition of the outer layer by the fluorescence intensity change of pH-sensitive dye encapsulated in the vesicles. The response time began to be slowed at approximately 30 % PC. The response times for the compositions were associated with the surface density of PC at the outer layer. These results also seem to be determined by the size of PLD, specifically the PLD active site.

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 25, 2012

There are no references for this article.