Effect of Low-Dose Selenium Supplementation on the Genotoxicity, Tissue Injury and Survival of Mice Exposed to Acute Whole-Body Irradiation

Effect of Low-Dose Selenium Supplementation on the Genotoxicity, Tissue Injury and Survival of... The aim of the present study is to evaluate the radioprotective effect of low-dose selenium supplementation (multiple administrations) on radiation toxicities and mortality induced by lethal dose of whole-body irradiation (WBI). For this, BALB/c mice received sodium selenite (4 μg/kg body wt) intraperitoneally for five consecutive days and subjected to WBI at an absorbed dose of 8 Gy (60Co, 1 Gy/min). Administration of sodium selenite was continued even during the post irradiation days three times a week till the end of the experiment. The radioprotective effect was evaluated in terms of the improvement in 30 days post irradiation survival, protection from DNA damage, and biochemical and histological changes in radiosensitive organs. The results indicated that low-dose sodium selenite administration did not protect the mice from radiation-induced hematopoietic and gastrointestinal injuries and subsequent mortality. However, it significantly prevented the radiation-induced genotoxicity or DNA damage in peripheral leukocytes. Further sodium selenite administration modulated the messenger RNA (mRNA) expression of GPx1, GPx2, and GPx4 in the spleen and intestine differentially and led to a significant increase in GPx activity (∼1.5 to 2-folds) in these organs. In line with this observation, sodium selenite administration reduced the level of lipid peroxidation in the intestine. In conclusion, our study shows that low-dose sodium selenite supplementation can be an effective strategy to prevent WBI-induced genotoxicity but may not have an advantage against mortality sustained during nuclear emergencies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Trace Element Research Springer Journals

Effect of Low-Dose Selenium Supplementation on the Genotoxicity, Tissue Injury and Survival of Mice Exposed to Acute Whole-Body Irradiation

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Life Sciences; Biochemistry, general; Biotechnology; Nutrition; Oncology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial