Effect of lateral offset on microstructure and strength of friction stir welded 2A14-T6 aluminum alloy

Effect of lateral offset on microstructure and strength of friction stir welded 2A14-T6 aluminum... In this paper, the effects of different lateral offset directions on the microstructure and mechanical properties of the welded joints of 2A14-T6 aluminum alloy during friction stir welding (FSW) were studied. The results indicate that the center of the weld nugget (WN) always coincides with the center of the welding tool. There is some influence on the shape of the WN when the offset condition is present. The movement of the location of the WN with the offset of the welding tool changes the location of the initial contact surface (ICS), resulting in the change of the severe level of stirring at the ICS and the pressure at the joint root. There are varying degrees of lack of penetration when the welding tool shifts to the retreating side (RS) and the advancing side (AS) respectively. The presence of the defects has an important influence on the mechanical property and fracture, especially when the welding tool shifts to the AS. The joint performance has obvious reduction. In summary, the quality of the joint is more sensitive to the condition of AS offset. . . . . Keywords FSW Aluminum alloy Offset direction Microstructure characteristic Strength and fracture 1 Introduction welding http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Effect of lateral offset on microstructure and strength of friction stir welded 2A14-T6 aluminum alloy

Loading next page...
 
/lp/springer_journal/effect-of-lateral-offset-on-microstructure-and-strength-of-friction-nQyYwPXLUn
Publisher
Springer London
Copyright
Copyright © 2018 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-018-2045-3
Publisher site
See Article on Publisher Site

Abstract

In this paper, the effects of different lateral offset directions on the microstructure and mechanical properties of the welded joints of 2A14-T6 aluminum alloy during friction stir welding (FSW) were studied. The results indicate that the center of the weld nugget (WN) always coincides with the center of the welding tool. There is some influence on the shape of the WN when the offset condition is present. The movement of the location of the WN with the offset of the welding tool changes the location of the initial contact surface (ICS), resulting in the change of the severe level of stirring at the ICS and the pressure at the joint root. There are varying degrees of lack of penetration when the welding tool shifts to the retreating side (RS) and the advancing side (AS) respectively. The presence of the defects has an important influence on the mechanical property and fracture, especially when the welding tool shifts to the AS. The joint performance has obvious reduction. In summary, the quality of the joint is more sensitive to the condition of AS offset. . . . . Keywords FSW Aluminum alloy Offset direction Microstructure characteristic Strength and fracture 1 Introduction welding

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Jun 3, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off