Effect of laser irradiation and ethylene on chilling tolerance of wheat seedlings

Effect of laser irradiation and ethylene on chilling tolerance of wheat seedlings In order to determine the mechanism of laser-enhanced chilling tolerance in wheat (Triticum aestivum L.) seedlings, the seeds were exposed to different treatments, and some physiological and biochemical parameters were measured in 5-day-old seedlings. The results showed that in wheat seedlings subjected to 1-aminocyclopropane-1-carboxylic acid (ACC) followed by chilling stress (CS), the concentrations of H2O2, O2 .− and MDA were lower, while the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as the soluble protein content (SPC) and the seedling length (SL) were higher than those in chilling stress treatment. When wheat seedlings were subjected to aminooxyacetic acid (AOA) followed by chilling stress, the results were different from those in which the seedlings were subjected to ACC. Although ACC and AOA treatments followed by laser irradiation led to an increase in the aforementioned enzyme activities, SPC, and SL, with a simultaneous decrease in concentrations of H2O2, O2 .−, and MDA, the effect of ACC treatment followed by laser irradiation was more favorable than that of AOA treatment followed by laser light. Similarly, the oxidative damage induced by chilling stress was alleviated in treatment with ACC+LR and AOA+LR, but alleviation effects of ACC+LR+CS were more prominent than in the treatment AOA+LR+CS. These results suggest that the laser light and ethylene have a positive synergistic effect, thus enhancing chilling tolerance in wheat seedlings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of laser irradiation and ethylene on chilling tolerance of wheat seedlings

Loading next page...
 
/lp/springer_journal/effect-of-laser-irradiation-and-ethylene-on-chilling-tolerance-of-GImxHNHniv
Publisher
Springer Journals
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443715030048
Publisher site
See Article on Publisher Site

Abstract

In order to determine the mechanism of laser-enhanced chilling tolerance in wheat (Triticum aestivum L.) seedlings, the seeds were exposed to different treatments, and some physiological and biochemical parameters were measured in 5-day-old seedlings. The results showed that in wheat seedlings subjected to 1-aminocyclopropane-1-carboxylic acid (ACC) followed by chilling stress (CS), the concentrations of H2O2, O2 .− and MDA were lower, while the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as the soluble protein content (SPC) and the seedling length (SL) were higher than those in chilling stress treatment. When wheat seedlings were subjected to aminooxyacetic acid (AOA) followed by chilling stress, the results were different from those in which the seedlings were subjected to ACC. Although ACC and AOA treatments followed by laser irradiation led to an increase in the aforementioned enzyme activities, SPC, and SL, with a simultaneous decrease in concentrations of H2O2, O2 .−, and MDA, the effect of ACC treatment followed by laser irradiation was more favorable than that of AOA treatment followed by laser light. Similarly, the oxidative damage induced by chilling stress was alleviated in treatment with ACC+LR and AOA+LR, but alleviation effects of ACC+LR+CS were more prominent than in the treatment AOA+LR+CS. These results suggest that the laser light and ethylene have a positive synergistic effect, thus enhancing chilling tolerance in wheat seedlings.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 29, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off