Effect of La and W dopants on dielectric and ferroelectric properties of PZT thin films prepared by sol–gel process

Effect of La and W dopants on dielectric and ferroelectric properties of PZT thin films prepared... La or W-doped lead zirconate titanate thin films (PLZT or PZTW) were prepared on platinized silicon substrates by sol–gel process. The effects of La or W dopant on the phase development, microstructure, dielectric and ferroelectric characteristics of films were studied. For PLZT films, the optimum doping concentration was found to be 2 mol%. While for PZTW films, the dielectric and ferroelectric properties were found to be improved as the doping concentration increased. The fatigue properties of PLZT and PZTW thin films were also investigated, the results showed that A- or B-site donor doping could improve the fatigue properties of PZT thin films. The theory of oxygen vacancy was used to explain the performance improvement caused by donor doping. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Physics A: Materials Science Processing Springer Journals

Effect of La and W dopants on dielectric and ferroelectric properties of PZT thin films prepared by sol–gel process

Loading next page...
 
/lp/springer_journal/effect-of-la-and-w-dopants-on-dielectric-and-ferroelectric-properties-PN0TqKnPad
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Physics; Condensed Matter Physics; Optical and Electronic Materials; Nanotechnology; Characterization and Evaluation of Materials; Surfaces and Interfaces, Thin Films; Operating Procedures, Materials Treatment
ISSN
0947-8396
eISSN
1432-0630
D.O.I.
10.1007/s00339-017-1428-x
Publisher site
See Article on Publisher Site

Abstract

La or W-doped lead zirconate titanate thin films (PLZT or PZTW) were prepared on platinized silicon substrates by sol–gel process. The effects of La or W dopant on the phase development, microstructure, dielectric and ferroelectric characteristics of films were studied. For PLZT films, the optimum doping concentration was found to be 2 mol%. While for PZTW films, the dielectric and ferroelectric properties were found to be improved as the doping concentration increased. The fatigue properties of PLZT and PZTW thin films were also investigated, the results showed that A- or B-site donor doping could improve the fatigue properties of PZT thin films. The theory of oxygen vacancy was used to explain the performance improvement caused by donor doping.

Journal

Applied Physics A: Materials Science ProcessingSpringer Journals

Published: Nov 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off