Effect of iron oxide (Fe2O3) on the structural, optical, electrical, and dielectric properties of SrO–V2O5 glasses

Effect of iron oxide (Fe2O3) on the structural, optical, electrical, and dielectric properties of... The oxide glass system of the composition (10 – x)SrO–xFe2O3–90V2O5, (x = 0, 2, 4, 6 and 8 mol %) were prepared by a standard melt quenching technique. The amorphous nature of the prepared glass was confirmed using X-ray diffraction technique. The infrared spectra of these glasses were recorded over a continuous spectral range (850–1500 cm–1). The density of prepared sample was obtained by the Archimedes principle. The physical parameters of the glasses were also determined with respect to the composition. Density increases from 3.10 to 3.20 g/cm3, whereas the molar volume decreases with the increase in Fe2O3 concentration. In order to study optical properties, absorption spectra were measured at room temperature. Indirect optical energy band gap, optical dielectric constant, refractive index were calculated from optical energy band gap. The refractive index decreases gradually with the increase in Fe2O3 content due to increase of bridging oxygen’s. For temperatures from 300 to 500 K, the dc conductivity increased with the increasing Fe2O3 content. The dielectric properties like dielectric constant, dielectric loss factor and dielectric loss tangent investigated at the room temperature in the frequency range of 10 kHz to 1 MHz decreases with frequency. The dielectric behavior shows strong frequency as well as composition dependence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Glass Physics and Chemistry Springer Journals

Effect of iron oxide (Fe2O3) on the structural, optical, electrical, and dielectric properties of SrO–V2O5 glasses

Loading next page...
 
/lp/springer_journal/effect-of-iron-oxide-fe2o3-on-the-structural-optical-electrical-and-J3ZA00Eyk2
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Materials Science; Ceramics, Glass, Composites, Natural Materials; Characterization and Evaluation of Materials; Materials Science, general; Physical Chemistry
ISSN
1087-6596
eISSN
1608-313X
D.O.I.
10.1134/S1087659617040149
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial