Effect of initial conditions on the near-field development of a round jet

Effect of initial conditions on the near-field development of a round jet This paper examines the effects of using different grids, placed at the nozzle exit plane, on the subsequent development of a subsonic round air jet. Modifications to the initial development of the jet are achieved in a passive manner by placing different grids at the nozzle exit plane. Time-averaged statistics of the velocity, including spectra, are combined with a numerical linear instability investigation. The grids suppress the initial shear layer instability whereas they damp the jet column instability. As a result, the streamwise decay and radial spreading of the perturbed jets are reduced. The instability analysis yields realistic values for the fastest growing instability frequency but incorrect growth rates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Effect of initial conditions on the near-field development of a round jet

Loading next page...
 
/lp/springer_journal/effect-of-initial-conditions-on-the-near-field-development-of-a-round-tInPfuVETM
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-004-0784-4
Publisher site
See Article on Publisher Site

Abstract

This paper examines the effects of using different grids, placed at the nozzle exit plane, on the subsequent development of a subsonic round air jet. Modifications to the initial development of the jet are achieved in a passive manner by placing different grids at the nozzle exit plane. Time-averaged statistics of the velocity, including spectra, are combined with a numerical linear instability investigation. The grids suppress the initial shear layer instability whereas they damp the jet column instability. As a result, the streamwise decay and radial spreading of the perturbed jets are reduced. The instability analysis yields realistic values for the fastest growing instability frequency but incorrect growth rates.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off