Effect of industrial air pollution on wild plant seed germination and seedling growth

Effect of industrial air pollution on wild plant seed germination and seedling growth Germination of the following wild plant seeds was studied: bilberry (Vaccinium myrtillus L.), cowberry (V. vitis-idaea L.), bog bilberry (V. uliginosum L.), black crowberry (Empetrum hermaphroditum Hagerup), bearberry (Arctostaphylos uva-ursi (L.) Spreng.), bunchberry (Chamaepericlymenum suecicum (L.) Aschers. et Graebn.), cottongrass (Eriophorum polystachion L.), goldenrod (Solidago lapponica With.), fireweed (Chamaenerion angustifolium (L.) Scop.), marsh cinquefoil (Comarum palustre L.), cloudberry (Rubus chamaemorus L.), and Scots pine (Pinus sylvestris L.). The seeds were collected at different distances from the source of industrial air pollution (Severonickel smelter complex, Murmansk region). The task was the assessment of potential possibility of restoring corrupted north forest plant communities via seed propagation. By the response of reproductive structures to stressor, investigated species were divided into 3 groups: tolerant (members of the genus Vaccinium and Ch. angustifolium); moderately tolerant (C. palustre, E. polystachion, A. uva-ursi, and R. chamaemorus); and sensitive (P. sylvestris, E. hermaphroditum, and S. lapponica). Laboratory seed germinability of Vaccinium species was high (> 90%) regardless of the levels of Ni and Cu accumulation in the seeds and the index of technogenic load, whereas this index in E. hermaphroditum and P. sylvestris seeds was significantly reduced with the increase in the heavy metal contents in the seeds. The greenhouse experiments with the seeds of three Vaccinium species collected in the background area and in the zone of the highest pollution and germinated on the forest litter from the same sites and observation for seedling development allow us to conclude that a potential possibility of these species to seed propagation are not limited by their seed viability even under conditions of the highest technogenic load. In sites of environment pollution, the high metal content in the upper soil layer is the main factor limiting plant seed propagation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Effect of industrial air pollution on wild plant seed germination and seedling growth

Loading next page...
 
/lp/springer_journal/effect-of-industrial-air-pollution-on-wild-plant-seed-germination-and-OTgQovU95X
Publisher
Springer Journals
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443711060136
Publisher site
See Article on Publisher Site

Abstract

Germination of the following wild plant seeds was studied: bilberry (Vaccinium myrtillus L.), cowberry (V. vitis-idaea L.), bog bilberry (V. uliginosum L.), black crowberry (Empetrum hermaphroditum Hagerup), bearberry (Arctostaphylos uva-ursi (L.) Spreng.), bunchberry (Chamaepericlymenum suecicum (L.) Aschers. et Graebn.), cottongrass (Eriophorum polystachion L.), goldenrod (Solidago lapponica With.), fireweed (Chamaenerion angustifolium (L.) Scop.), marsh cinquefoil (Comarum palustre L.), cloudberry (Rubus chamaemorus L.), and Scots pine (Pinus sylvestris L.). The seeds were collected at different distances from the source of industrial air pollution (Severonickel smelter complex, Murmansk region). The task was the assessment of potential possibility of restoring corrupted north forest plant communities via seed propagation. By the response of reproductive structures to stressor, investigated species were divided into 3 groups: tolerant (members of the genus Vaccinium and Ch. angustifolium); moderately tolerant (C. palustre, E. polystachion, A. uva-ursi, and R. chamaemorus); and sensitive (P. sylvestris, E. hermaphroditum, and S. lapponica). Laboratory seed germinability of Vaccinium species was high (> 90%) regardless of the levels of Ni and Cu accumulation in the seeds and the index of technogenic load, whereas this index in E. hermaphroditum and P. sylvestris seeds was significantly reduced with the increase in the heavy metal contents in the seeds. The greenhouse experiments with the seeds of three Vaccinium species collected in the background area and in the zone of the highest pollution and germinated on the forest litter from the same sites and observation for seedling development allow us to conclude that a potential possibility of these species to seed propagation are not limited by their seed viability even under conditions of the highest technogenic load. In sites of environment pollution, the high metal content in the upper soil layer is the main factor limiting plant seed propagation.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 12, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off