Effect of HF treatment on the activity of TiO2 thin films for photocatalytic water splitting

Effect of HF treatment on the activity of TiO2 thin films for photocatalytic water splitting The effects of HF treatment on the activity of TiO2 thin films for the photocatalytic water splitting reaction have been investigated. TiO2 thin films treated with HF solution (HF-TiO2) were found to exhibit a remarkable enhancement of the photocatalytic activity for H2 evolution from a methanol aqueous solution, as well as efficient photoelectrochemical performance under UV light irradiation as compared with the untreated TiO2. Moreover, Pt-loaded HF-TiO2 thin films were found to act as efficient and stable photocatalysts for the decomposition of water under UV light irradiation. The mechanistic insights obtained in the present study will be useful in the design of highly efficient photocatalysts for the decomposition of water. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Effect of HF treatment on the activity of TiO2 thin films for photocatalytic water splitting

Loading next page...
 
/lp/springer_journal/effect-of-hf-treatment-on-the-activity-of-tio2-thin-films-for-LZ9HAFfxr9
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856708784795518
Publisher site
See Article on Publisher Site

Abstract

The effects of HF treatment on the activity of TiO2 thin films for the photocatalytic water splitting reaction have been investigated. TiO2 thin films treated with HF solution (HF-TiO2) were found to exhibit a remarkable enhancement of the photocatalytic activity for H2 evolution from a methanol aqueous solution, as well as efficient photoelectrochemical performance under UV light irradiation as compared with the untreated TiO2. Moreover, Pt-loaded HF-TiO2 thin films were found to act as efficient and stable photocatalysts for the decomposition of water under UV light irradiation. The mechanistic insights obtained in the present study will be useful in the design of highly efficient photocatalysts for the decomposition of water.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off